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The Dirichlet space: definition

Let D = {z ∈ C : |z | < 1}.

D := {f : D→ C, analytic,

∫
D
|f ′(z)|2dA(z) <∞}

where dA is the normalized Lebesgue area measure of D,
equipped with the norm

‖f ‖2D := |f (0)|2 +

∫
D
|f ′(z)|2dA(z).
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First remarks

D ⊂ H2 ⊂ B

where H2 is the Hardy space,

H2 := {f : D→ C analytic, sup
0≤r<1

∫ 2π

0
|f (re it)|2dt <∞}

and B is the Bergman space,

B := {f : D→ C analytic,

∫
D
|f (z)|2dA(z) <∞}.

Therefore
f ∈ D ⇐⇒ f ′ ∈ B.
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Bounded composition operators

Let ϕ : D→ D analytic and

Cϕ : Hol(D)→ Hol(D), Cϕ(f ) = f ◦ ϕ

is a composition operator by ϕ.

Cϕ is always a bounded operator on H2 (Littlewood subordination
principle)
A necessary condition for Cϕ to be a bounded operator on D is
ϕ ∈ D, since z → z is in D.
Moreover ϕ : D→ D analytic does not imply ϕ ∈ D, e.g infinite
Blaschke products are never in D.
In 1980, Voas (Phd thesis) characterized ϕ ∈ D such that Cϕ is
bounded on D.
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Weighted composition operator

Let u ∈ D, ϕ : D→ D analytic, and define the weighted
composition operator

Wu,ϕ : f → u.f ◦ ϕ = TuCϕ.

If Cϕ is bounded on D, if u is a multiplier of D (i.e. Tu(f ) := uf
is a bounded operator on D), then Wu,ϕ is also bounded on D.
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Multipliers of D

The multipliers of H2 is H∞,

but the multipliers of D is not that
easy to describe.
Characterization due to Stegenga ’80: Condition involving the
logarithmic capacity of their boundary values.
In particular

{multiplier of D} ( D ∩ H∞.

Definition: µ is a Carleson measure for D if D injects
continuously into L2(D, µ).
Therefore u is a multiplier for D iff dµ(z) = |u′(z)|2dA(z) is a
Carleson measure for D.
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An example

Let u(z) = (1− z)2 and let ϕ be the infinite Blaschke product
with zeroes (1− 1/n2)n≥1.

Then ϕ 6∈ D, and thus Cϕ is not bounded.
However, for f ∈ D,

((1− z)2(f ◦ ϕ))′ = −2(1− z)(f ◦ ϕ) + (1− z)2(f ′ ◦ ϕ)ϕ′.

The first term is in B, (1− z)2ϕ′ is bounded,f ′ ◦ ϕ is in B.
Therefore Wu,ϕ is bounded on D...and Cϕ is not.
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Space of multipliers

Def: For ϕ : D→ D analytic,
M(ϕ) := {u ∈ D : Wu,ϕ bounded on D}.

Theorem 1: Let ϕ be an inner function (i.e limr→1− |ϕ(re it)| = 1
for a.a. t). Then M(ϕ) = {multiplier of D} iff ϕ is a finite
Blaschke product.

The assumption ϕ inner cannot be relaxed, even if ‖ϕ‖∞ = 1 and

Cϕ bounded: e.g. ϕ(z) = (1− z)/2 and u(z) =
∑

k≥2
zk

k(log k)3/4
.

u is in D but is not a multiplier, and Wu,ϕ is bounded.
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M(ϕ) := {u ∈ D : Wu,ϕ bounded on D}.

Theorem 2: Let ϕ : D→ D analytic. Then M(ϕ) = D iff
‖ϕ‖∞ < 1 and ϕ is a multiplier of D.
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Analytic functions on the disc D

Take (βn)n≥0 a sequence of positive real numbers.

Then H2(β) is

the space of analytic functions

f (z) =
∞∑
n=0

cnz
n

in the unit disc D that have finite norm

‖f ‖β =

( ∞∑
n=0

|cn|2β2n

)1/2

.

So ‖zn‖ = βn.
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.

Note that βn = 1 gives the usual Hardy space.

Similarly, βn = 1/
√
n + 1 produces the Bergman space.

We always have H2 ⊆ H2(β) if (βn)n is decreasing.

The case βn =
√
n + 1 provides the Dirichlet space, which is

included in H2.
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Some operators on H2

Take ϕ : D→ D analytic and h ∈ H2(D).

The weighted

composition operator Wh,ϕ is defined by

Wh,ϕf = h.(f ◦ ϕ) (f ∈ H2).

Special cases:
Analytic Toeplitz operators Th where ϕ(z) = z ;
Composition operators Cϕ where h(z) = 1.

Now, Wh,ϕ is bounded on H2 if h ∈ H∞ or if ‖ϕ‖∞ < 1.

General boundedness conditions are known but are more
complicated (e.g. in terms of Carleson measures or reproducing
kernels).
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Lower-triangular operators

Theorem 3: Suppose X is a complex Banach space with a
1-unconditional basis (xj)j≥0 (e.g. `p spaces), and that A : X → X
is bounded and lower-triangular w.r.t. this basis.

Take

D = diag(dj) where (dj)j≥0 is an increasing sequence of positive
reals. Then ‖D−1AD‖ ≤ ‖A‖.

This is a stronger form of a result proved by Kac’nelson in 1972,
and we use a similar proof.

Namely let Ω(z) = D−zADz and use Phragmén-Lindelöf to show
that ‖Ω(z)‖ attains its maximum on the imaginary axis.
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This is a stronger form of a result proved by Kac’nelson in 1972,
and we use a similar proof.

Namely let Ω(z) = D−zADz and use Phragmén-Lindelöf to show
that ‖Ω(z)‖ attains its maximum on the imaginary axis.
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Consequences for H2(β)

Corollary 4: Let T be a bounded operator on H2 given by a
lower-triangular matrix with respect to the basis (zn)n≥0.

Take (βn)n≥0 positive and decreasing (e.g. Bergman space).

Then T is bounded on H2(β) and

‖T‖H2(β) ≤ ‖T‖H2 .

Example: Wh,ϕ where ϕ(0) = 0.

Known special cases:
Cϕ (Cowen–MacCluer, using Hadamard–Schur products);
Th (can be deduced from Kac’nelson’s lemma).
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Slightly more generally...

We can treat the case ϕ(0) = a, not necessarily 0.

Let

ψ(z) =
a− z

1− az
,

be an automorphism of the disc.

It is known that Cψ is bounded (see Gallardo-Gutiérrez–Partington
for recent norm estimates).

Compose with this to get the general result

‖Wh,ϕ‖H2(β) ≤ ‖Cψ‖H2(β)‖Wh,ϕ‖H2‖Cψ‖H2 .
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Consequences for H2

Corollary 5: Let T be a bounded operator on H2(β) given by a
lower-triangular matrix with respect to the basis (zn)n≥0.

Take (βn)n≥0 positive and increasing (e.g. Dirichlet space).

Then T is bounded on H2 and

‖T‖H2 ≤ ‖T‖H2(β).



Paley–Wiener theorems

Recall that the Laplace transform

Lf (s) =

∫ ∞
0

f (t)e−st dt

provides an isomorphism of L2(0,∞) onto H2(C+), the Hardy
space of the right half-plane, with

‖Lf ‖H2(C+) =
√

2π‖f ‖2.

A wider class of spaces and isometric mappings was introduced by
Zen Harper (2006), extended by Jacob–Partington–Pott (2013).
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Measures defining Zen spaces

Let ν be a (not necessarily finite) positive Borel measure on (0,∞)
with ν[0, 2x ] ≤ Cν[0, x) for all x > 0.

Let

w(t) = 2π

∫ ∞
0

e−2xt dν(x) (t ≥ 0).

Examples:
ν = δ0 (Dirac), w(t) ≡ 2π.
dν(x) = dx (Lebesgue), w(t) = π/t.
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The Laplace isometry

Then L is an isometric mapping from L2(0,∞;w(t) dt) into the
space A2

ν of analytic functions f on C+ whose norm

‖f ‖ =

(∫ ∞
0

∫ ∞
−∞
|f (x + iy)|2 dν(x) dy

)1/2

is finite.

So L2(0,∞) (= L2(0,∞; dt) gives the Hardy space,

L2(0,∞; dt/t) gives the Bergman space, etc.



The Laplace isometry

Then L is an isometric mapping from L2(0,∞;w(t) dt) into the
space A2

ν of analytic functions f on C+ whose norm

‖f ‖ =

(∫ ∞
0

∫ ∞
−∞
|f (x + iy)|2 dν(x) dy

)1/2

is finite. So L2(0,∞) (= L2(0,∞; dt) gives the Hardy space,

L2(0,∞; dt/t) gives the Bergman space, etc.



The Laplace isometry

Then L is an isometric mapping from L2(0,∞;w(t) dt) into the
space A2

ν of analytic functions f on C+ whose norm

‖f ‖ =

(∫ ∞
0

∫ ∞
−∞
|f (x + iy)|2 dν(x) dy

)1/2

is finite. So L2(0,∞) (= L2(0,∞; dt) gives the Hardy space,

L2(0,∞; dt/t) gives the Bergman space, etc.



Causal operators

The continuous analogue of a lower-triangular operator is a causal
operator: one in which L2(τ,∞) is an invariant subspace for each
τ > 0.

Theorem. If A : L2(0,∞)→ L2(0,∞) is causal and bounded,
then for every decreasing weight w it is bounded on
L2(0,∞;w(t) dt) with

‖A‖L2(0,∞;w(t) dt) ≤ ‖A‖L2(0,∞).
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Weighted composition operators on the half-plane

If ϕ : C+ → C+ is analytic, then it has the Nevanlinna
representation

ϕ(s) = as + ib +

∫ ∞
−∞

1− its

s − it
dµ(t),

with a ≥ 0, b ∈ R and µ a measure of R.

However Cϕ : H2(C+)→ H2(C+) is not necessarily bounded (see
later), unlike in the case of D.

Now Wh,ϕ will be causal if h is analytic and a ≥ 1. For the

non-causal case we can again compose with an automorphism to
get a norm estimate.
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The theorem for weighted composition operators

Theorem. Let ϕ : C+ → C+ be analytic with a > 0 the number
occurring in its Nevanlinna representation, and let h : C+ → C be
holomorphic such that Wh,ϕ is bounded on H2(C+).

Then Wh,ϕ is

also bounded on A2
ν and

‖Wh,ϕ‖A2
ν
≤ ‖Cψ‖A2

ν
‖Wh,ϕ‖H2(C+)‖C

−1
ψ ‖H2(C+),

where ψ(s) = as.
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Some exact answers for composition operators

Elliott–Jury (2012): Cϕ is bounded on H2(C+) if and only if

n.t.lim z→∞ϕ(z) =∞,

and
λ := n.t.lim z→∞z/ϕ(z)

exists (angular derivative at ∞) with 0 < λ <∞.

Then

‖Cϕ‖ =
√
λ.

For weighted Bergman spaces (Zen spaces with dν(x) = xα dx and
α > −1) a similar result holds (Elliott–Wynn, 2011), with

‖Cϕ‖A2
ν

= λ(2+α)/2.

Now for causality 0 < λ ≤ 1 and, as expected, ‖Cϕ‖A2
ν
≤ ‖Cϕ‖H2 .
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