Extensions of B(E) for Banach spaces E

Richard Skillicorn

Lancaster University

30th April 2014

Joint work with N.J.Laustsen

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

Read's Spac

Talk Outline

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

Read's Spa

- ▶ Extensions of Banach algebras
- Read's Banach Space
- ► Results

Definition

Let ${\cal B}$ be a Banach algebra. An extension of ${\cal B}$ is a short exact sequence of Banach algebras and continuous algebra homomorphisms:

$$0 \longrightarrow I \stackrel{\iota}{\longrightarrow} A \stackrel{\pi}{\longrightarrow} B \longrightarrow 0$$

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

Read's Spac

Definition

Let B be a Banach algebra. An extension of B is a short exact sequence of Banach algebras and continuous algebra homomorphisms:

$$0\longrightarrow I\stackrel{\iota}{\longrightarrow} A\stackrel{\pi}{\longrightarrow} B\longrightarrow 0$$

The extension *splits algebraically* if there is an algebra homomorphism $\rho: B \to A$ such that $\pi \circ \rho = \mathrm{id}_B$, and *splits strongly* if this map can be chosen to be continuous.

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

Read's Spac

Extensions of Banach algebras

Extensions of B(E) for

Banach spaces E

Richard Skillicorn

iteau s opa

Results

Questions about splittings (Bade, Dales, Lykova, '99):

- For which Banach algebras is it true that every extension must split, either algebraically or strongly?
- 2. For which Banach algebras is it true that every extension which splits algebraically also splits strongly?

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

read s Spa

Results

Questions about splittings (Bade, Dales, Lykova, '99):

- For which Banach algebras is it true that every extension must split, either algebraically or strongly?
- 2. For which Banach algebras is it true that every extension which splits algebraically also splits strongly?
- 3. Is there an extension of B(E) which splits algebraically but not strongly, for some Banach space E?

Theorem (Johnson, '67)

Let E be a Banach space. If $E \cong E \oplus E$ then every homomorphism from B(E) into a Banach algebra is continuous.

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

Read's Space

Theorem (Johnson, '67)

Let E be a Banach space. If $E \cong E \oplus E$ then every homomorphism from B(E) into a Banach algebra is continuous.

Covers most classical Banach spaces e.g:

- ▶ $L_p(\Omega, \Sigma, \mu)$ for $p \in [1, \infty]$
- ightharpoonup C(K) for K infinite compact metric space.

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

Read's Space

Theorem (Johnson, '67)

Let E be a Banach space. If $E \cong E \oplus E$ then every homomorphism from B(E) into a Banach algebra is continuous.

Covers most classical Banach spaces e.g:

- ▶ $L_p(\Omega, \Sigma, \mu)$ for $p \in [1, \infty]$
- ightharpoonup C(K) for K infinite compact metric space.

Corollary (Bade, Dales, Lykova, '99)

Let E be a Banach space. If $E \cong E \oplus E$ then every extension of B(E) which splits algebraically also splits strongly.

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

What about when $E \ncong E \oplus E$?

- ▶ James space *J*
- $ightharpoonup C[0,\omega_1]$

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

Read's Space

What about when $E \ncong E \oplus E$?

- ▶ James space *J*
- $ightharpoonup C[0,\omega_1]$

Every homomorphism from B(E) into a Banach algebra continuous for these spaces too (Willis, '95), (Ogden, '96).

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

Read's Space

What about when $E \ncong E \oplus E$?

- ▶ James space *J*
- $ightharpoonup C[0,\omega_1]$

Every homomorphism from B(E) into a Banach algebra continuous for these spaces too (Willis, '95), (Ogden, '96).

Corollary

If E = J or $E = C[0, \omega_1]$ then every extension of B(E) which splits algebraically also splits strongly.

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

Read s Space

What about when $E \ncong E \oplus E$?

- ▶ James space *J*
- $ightharpoonup C[0,\omega_1]$

Every homomorphism from B(E) into a Banach algebra continuous for these spaces too (Willis, '95), (Ogden, '96).

Corollary

If E = J or $E = C[0, \omega_1]$ then every extension of B(E) which splits algebraically also splits strongly.

Banach spaces with discontinuous homomorphisms from B(E):

- ▶ Read's space E_R
- ▶ Dales-Loy-Willis' space E_{DLW} (with CH)

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

rtead s Spac

Splittings of extensions of B(E)

Question (BDL)

Is there an extension of B(E) which splits algebraically but not strongly, for some Banach space E?

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

Read's Spac

Splittings of extensions of B(E)

Question (BDL)

Is there an extension of B(E) which splits algebraically but not strongly, for some Banach space E?

How to approach this question? Need a Banach space such that:

- ► There is a discontinuous homomorphism from B(E) into a Banach algebra,
- ▶ This Banach algebra is an extension of B(E),
- There is no continuous homomorphism that splits the extension.

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

Read's Spac

Read's Space

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

Read's Space

resuits

Theorem (Read, '89)

There is a Banach space $E_{\mathcal{R}}$ such that there is a discontinuous homomorphism from $B(E_{\mathcal{R}})$ into a Banach algebra.

 $E_{\mathcal{R}}$ is a direct sum of quasi-reflexive, 'James-like' spaces.

Theorem (Laustsen-S)

There exists a continuous surjective algebra homomorphism φ such that the extension

$$0\longrightarrow W(E_{\mathcal{R}})\stackrel{\iota}{\longrightarrow} B(E_{\mathcal{R}})\stackrel{\varphi}{\longrightarrow} \tilde{\ell_2}\longrightarrow 0$$

splits strongly.

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

Read's Space

Theorem (Laustsen-S)

There exists a continuous surjective algebra homomorphism φ such that the extension

$$0\longrightarrow W(E_{\mathcal{R}})\stackrel{\iota}{\longrightarrow} B(E_{\mathcal{R}})\stackrel{\varphi}{\longrightarrow} \tilde{\ell_2}\longrightarrow 0$$

splits strongly.

Corollary

The Banach algebra $B(E_R)$ has the form

$$B(\mathcal{E}_{\mathcal{R}}) = W(\mathcal{E}_{\mathcal{R}}) \oplus \rho(\ell_2) \oplus \mathbb{C}1$$

where $\rho: \tilde{\ell}_2 \to B(E_{\mathcal{R}})$ is the strong splitting, so that $W(E_{\mathcal{R}})$ is complemented as a Banach space in $B(E_{\mathcal{R}})$.

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

Read's Space

Theorem (Laustsen-S)

Let B be a unital Banach algebra containing a proper closed (two-sided) ideal W such that $B=D\oplus \mathbb{C}1\oplus W$ as a Banach space, where

- (i) D is a closed subspace of B,
- (ii) $D^2 \subseteq W$,
- (iii) $D \ncong \ell_1(J)$ for any index set J.

Then there is an extension of B which splits algebraically but not strongly.

Extensions of B(E) for Banach spaces E

Richard Skillicorn

algebras

Read's Space

Theorem (Laustsen-S)

Let B be a unital Banach algebra containing a proper closed (two-sided) ideal W such that $B=D\oplus \mathbb{C}1\oplus W$ as a Banach space, where

- (i) D is a closed subspace of B,
- (ii) $D^2 \subseteq W$,
- (iii) $D \ncong \ell_1(J)$ for any index set J.

Then there is an extension of B which splits algebraically but not strongly.

Corollary

There is an extension of $B(E_R)$ which splits algebraically but not strongly.

Extensions of B(E) for Banach spaces E

Richard Skillicorn

algebras

rtead s Spac

Corollary

There is an extension of $B(E_{\mathcal{R}})$ which splits algebraically but not strongly.

Extensions of B(E) for Banach spaces E

Richard Skillicorn

Extensions of Banach algebras

.

Extensions of B(E) for Banach spaces E Richard Skillicorn

Results

Corollary

There is an extension of $B(E_R)$ which splits algebraically but not strongly.

Proof.

We need to find W and D such that $B(E_R) = D \oplus \mathbb{C}1 \oplus W$ and such that:

- (i) D is a closed subspace of $B(E_R)$,
- (ii) $D^2 \subseteq W$.
- (iii) $D \ncong \ell_1(J)$ for any index set J.

Take $D = \rho(\ell_2)$ and $W = W(E_R)$. (i) is the previous corollary. Conditions (ii) and (iii) follow since $\rho(\ell_2) \cong \ell_2$ as Banach algebras, where ℓ_2 has the trivial product.

What is the extension? We get:

$$0 \longrightarrow \operatorname{Ker} \psi \stackrel{\iota}{\longrightarrow} \ell_1(\Gamma) \oplus \mathbb{C}1 \oplus W(E_{\mathcal{R}}) \stackrel{\psi}{\longrightarrow} B(E_{\mathcal{R}}) \longrightarrow 0$$

where

- $\psi(f,\lambda 1,W)=q(f)+\lambda 1+W.$
- ▶ $q: \ell_1(\Gamma) \to \rho(\ell_2)$ is a bounded linear surjection.
- ▶ Γ is a dense subset of the unit ball of $\rho(\ell_2)$.

Extensions of B(E) for Banach spaces E

Richard Skillicorn

algebras

Read's Space

Further Results

Definition

Let

$$0 \longrightarrow I \stackrel{\iota}{\longrightarrow} A \stackrel{\pi}{\longrightarrow} B \longrightarrow 0$$

be an extension of a Banach algebra B. The extension is *radical* if $I \subset \operatorname{rad} B$, *singular* if $I^2 = 0$, and *admissible* if there is a continuous linear map $Q: B \to A$ such that $\pi \circ Q = \operatorname{id}_B$,

Extensions of B(E) for Banach spaces E

Richard Skillicorn

algebras

rteau 3 Jp

Further Results

Definition

Let

$$0 \longrightarrow I \stackrel{\iota}{\longrightarrow} A \stackrel{\pi}{\longrightarrow} B \longrightarrow 0$$

be an extension of a Banach algebra B. The extension is *radical* if $I \subset \operatorname{rad} B$, *singular* if $I^2 = 0$, and *admissible* if there is a continuous linear map $Q: B \to A$ such that $\pi \circ Q = \operatorname{id}_B$,.

Proposition (Laustsen-S)

Let Σ be the extension of $B(E_R)$ given by the previous theorem. Then Σ is singular and radical, but is not admissible. Extensions of B(E) for Banach spaces E

Richard Skillicorn

algebras

Read's Space

References

- W.G Bade, H.G Dales, Z.A Lykova, *Algebraic and Strong Splittings of Extensions of Banach Algebras*, Memoirs of the AMS, No 656 Vol 137 (1999) ISSN 0065-9266
- N.J. Laustsen, R.J. Skillicorn, Splittings of extensions of the algebra of bounded operators on a Banach space, in preparation.
- C.J. Read, *Discontinuous derivations on the algebra of bounded operators on a Banach space*, J. London Math. Soc. (2) 40 (1989), 305-326

Extensions of B(E) for Banach spaces E

Richard Skillicorn

algebras