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Operators

By an operator in a complex Hilbert space H we mean a
linear mapping A : H ⊇ D(A)→ H defined on a vector
subspace D(A) of H, called the domain of A;
A is said to be normal if A is densely defined, closed and

A∗A = AA∗;

equivalently: A is densely defined, D(A) = D(A∗) and

‖Af‖ = ‖A∗f‖ for every f ∈ D(A).
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Particular classes of operators

An operator S in H is subnormal if S is densely defined
and there exists a complex Hilbert space K and a normal
operator N in K such that H ⊆ K (isometric embedding)
and Sh = Nh for every h ∈ D(S).
An operator A in H is hyponormal if A is densely defined,
D(A) ⊆ D(A∗) and ‖A∗f‖ 6 ‖Af‖ for every f ∈ D(A).
An operator A in H is paranormal if ‖Af‖2 6 ‖f‖‖A2f‖ for
all f ∈ D(A2).
The following holds:

{normal}  {subnormal}  {hyponormal}  {paranormal}.
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Subnormal operators

The theory of unbounded subnormal operators subsumes
the theories of bounded subnormal operators and
unbounded symmetric operators.
bounded operators: Halmos (1950), Bram (1955), . . . (two
monographs by J. Conway).
unbounded operators: Bishop (1957), Foiaş (1962),
McDonald & Sundberg (1986), JS & Szafraniec (1985-89),
. . .
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The creation operator of quantum mechanics

The creation operator a+ is defined in L2(R) by

a+ =
1√
2

(
x − d

dx

)
.

The creation operator a+ is subnormal.
The creation operator a+ is unitarily equivalent to the
operator of multiplication by the independent variable “z” in
the Segal-Bargmann space of entire functions that are
square integrable with respect to the Gaussian measure on
the complex plane [Segal, Bargmann 1961].
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Symmetric operators

An operator S in H is said to be symmetric (resp.,
selfadjoint) if S is densely defined and S ⊆ S∗

(respectively, S = S∗).
Clearly, selfadjoint operators are normal.
A symmetric operator S in H is subnormal because it has
a selfadjoint extension possibly in a larger Hilbert space
[Naimark].
S has a selfadjoint extension within H if and only if the
deficiency indices of S are equal [von Neumann].
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Formally normal operators

symmetric selfadjoint
formally normal normal ?
An operator A in H is said to be formally normal if A is
densely defined, D(A) ⊆ D(A∗) and ‖Af‖ = ‖A∗f‖ for
every f ∈ D(A);
The following holds:

{normal}  {formally normal}  {hyponormal},

and

{symmetric}  {formally normal}.
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Jan Stochel Uniwersytet Jagielloński Kraków Subnormality via directed trees



Formal normality and subnormality

Formally normal operators may not be subnormal
[Coddington 1965].
There exist a nonsubnormal formally normal operator A
and a polynomial p ∈ C[Z , Z̄ ] of degree 3 such that D(A)
is invariant for A and A∗, and

p(A,A∗)f = 0 for every f ∈ D(A);

3 is the smallest possible degree [JS 1991].
p = Y(Y− X2) where X = 1

2(Z + Z) and Y = 1
2i (Z− Z).

Hence, there are unbounded operators generating
Stieltjes moment sequences that are not subnormal.
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Stieltjes moment sequences

A sequence {γn}∞n=0 of nonnegative real numbers is called
a Stieltjes moment sequence if there exists a (positive)
Borel measure µ on [0,∞) such that

γn =

∫ ∞
0

xn dµ(x), n > 0;

such a µ is called a representing measure of the
sequence {γn}∞n=0.
We say that a Stieltjes moment sequence {γn}∞n=0 is
determinate if it has a unique representing measure;
otherwise, we say that {γn}∞n=0 is indeterminate.
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Generating Stieltjes moment sequences

We say that an operator S in H generates Stieltjes
moment sequences if the set D∞(S) :=

⋂∞
n=0 D(Sn) of all

C∞-vectors of S is dense in H and {‖Snf‖2}∞n=0 is a
Stieltjes moment sequence for every f ∈ D∞(S).

Theorem (Lambert 1976)
A bounded operator on H is subnormal if and only if it
generates Stieltjes moment sequences.
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A question

Lambert’s theorem is not true for unbounded operators.
Recall that there are nonsubnormal formally normal
operators (hence hyponormal) which generate Stieltjes
moment sequences.
The question is whether there are closed nonhyponormal
operators that generate Stieltjes moment sequences?
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Directed trees

V ◦ = V \{root} if T has a root and V ◦ = V if T is rootless.
T = (V ,E) is a directed tree (V = vertices, E = edges).
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`2(V ) over a directed tree

`2(V ) is the Hilbert space of square summable complex
functions on V with the standard inner product

〈f ,g〉 =
∑
u∈V

f (u)g(u), f ,g ∈ `2(V ).

For u ∈ V , we define eu ∈ `2(V ) by

eu(v) =

{
1 if u = v ,
0 if u 6= v .

{eu}u∈V is an orthonormal basis of `2(V ).
EV = the linear span of the set {eu : u ∈ V}.
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Weighted shifts on directed trees

Let λ = {λv}v∈V◦ be a system of complex numbers (called
weights).
Define the operator Sλ in `2(V ) by

D(Sλ) =
{

f ∈ `2(V ) : Sλf ∈ `2(V )
}
,

(Sλf )(v) =


λv · f

(
par(v)

)
if v ∈ V ◦,

0 if v = root,
f ∈ D(Sλ).

The operator Sλ is called a weighted shift on the directed
tree T with weights λ [Jabłoński, Jung & JS 2012].
Weighted adjacency operators [Fujii, Sasaoka & Watatani
1991]; weighted composition operators [Carlson 1990 -
discrete and bounded], [Campbell & Hornor 1993 -
bounded and partially unbounded].
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Figure
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Elementary properties of w.s.’s on directed trees

Each weighted shift Sλ on a directed tree T is closed.
A weighted shift Sλ is densely defined if and only if
EV ⊆ D(Sλ).
If Sλ is densely defined, then

Sλeu =
∑

v∈Chi(u)

λv ev , u ∈ V ,

where Chi(u) = {v ∈ V : (u, v) ∈ E} is the set of all
children (or successors) of the vertex u.
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Hyponormality

Theorem (Budzyński, Jabłoński, Jung & JS 2012)
Let Sλ be a densely defined weighted shift on a leafless
directed tree T = (V ,E) with nonzero weights λ = {λv}v∈V◦ .
Then Sλ jest hyponormal if and only if

∑
v∈Chi(u)

|λv |2

‖Sλev‖2
6 1, u ∈ V .

(Chi(u) is the set of all children of u).
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Tη,κ

The directed tree Tη,κ.

η ∈ {2,3,4, . . .} ∪ {∞} and κ ∈ {0,1,2, . . .} ∪ {∞}.

Tη,κ is a directed tree with one branching vertex and η
branches; its trunk consists of κ+ 1 vertices (counting the
branching vertex):
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Towards a counterexample

A nonhyponormal weighted shift Sλ that generates
Stieltjes moment sequences will be constructed on the
directed tree T∞,κ.
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General scheme

Let {γn}∞n=−κ ⊆ (0,∞) be a sequence such that

γ0 = 1

γn =

∫ ∞
0

xn d ν(x), n ∈ Z, n > −κ,

for some Borel measure ν on R+.
Let ρ be a representing measure of the Stieltjes moment
sequence {γn+1}∞n=0 such that

0 <
∫ ∞

0

1
xn d ρ(x) <∞, n ∈ Jκ+1,

card(supp(ρ)) >

{
η if η <∞,
ℵ0 if η =∞,

where Jι = {1,2, . . . , ι} \ {∞} for ι ∈ {1,2, . . .} ∪ {∞}.
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General scheme

Let {Ωi}ηi=1 be a sequence of pairwise disjoint Borel
subsets of the interval (0,∞) such that

ρ(Ωi) > 0, i ∈ Jη,⊔
i∈Jη

Ωi = (0,∞).

(Such a partition of the set (0,∞) always exists.)
Define the sequence {µi,1}i∈Jη of Borel probability
measures on R+ by

µi,1(σ) =
1

ρ(Ωi)
ρ(Ωi ∩ σ), σ ∈ B(R+), i ∈ Jη.
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General scheme

Next we define the family {λi,j : i ∈ Jη, j ∈ J∞} ⊆ (0,∞) by

λi,j =


√
ρ(Ωi) for j = 1,√ ∫∞

0 x j−1 dµi,1(x)∫∞
0 x j−2 dµi,1(x)

for j > 2,
i ∈ Jη.

If κ > 0, then we define {λ−k}κ−1
k=0 ⊆ (0,∞) by

λ−k =

√
γ−k

γ−(k+1)
, k ∈ Z+, 0 6 k < κ.

Let Sλ be the weighted shift on Tη,κ with the
above-defined weights λ = {λv}v∈V◦

η,κ
.

Sλ depends on
(
{γn}∞n=−κ, ρ, {Ωi}ηi=1

)
.
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Properties of Sλ

Theorem (Jabłoński, Jung & JS 2012)
Under the above assumptions and definitions, we have

EVη,κ ⊆ D∞(Sλ),

{‖Sn
λf‖2}∞n=0 is a Stieltjes moment sequence for every

f ∈ D∞(Sλ), so Sλ generates Stieltjes moment sequences,
Sλ is paranormal,

Sλ is hyponormal if and only if
∑

i∈Jη
λ2

i,1
‖Sλei,1‖2 6 1,∑

i∈Jη
λ2

i,1
‖Sλei,1‖2 6

∫∞
0

1
x d ρ(x),

the above inequality becomes equality if and only if for
every i ∈ Jη, there exists qi ∈ Ωi such that

ρ(σ ∩Ωi) = ρ(Ωi) · δqi (σ), σ ∈ B(R+), i ∈ Jη.
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A counterexample - the directed tree T∞,κ

Theorem (Jabłoński, Jung & JS 2012)
For every κ ∈ {0,1,2, . . .} ∪ {∞} there exists an injective
weighted shift Sλ on T∞,κ such that:

Sλ generates Stieltjes moment sequences,
Sλ is not hyponormal, hence it is not subnormal,
Sλ is a paranormal operator,
D∞(Sλ) is a core for Sn

λ for every n > 0.

♣ The proof of the above theorem depends heavily on some
subtle properties of N-extremal measures. Recall that each
indeterminate Stieltjes moment sequence possesses a
continuum of N-extremal measures.
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Composition operators in L2-spaces

(X ,A, µ) is a σ-finite measure space.
φ : X → X is an A-measurable transformation, i.e.,
φ−1(∆) ∈ A for every ∆ ∈ A.
If φ is nonsingular, i.e., the measure µ ◦ φ−1 given by
µ ◦ φ−1(∆) = µ(φ−1(∆)) for ∆ ∈ A is absolutely continuous
with respect to µ, then the operator Cφ in L2(µ) given by

D(Cφ) = {f ∈ L2(µ) : f ◦ φ ∈ L2(µ)},
Cφf = f ◦ φ, f ∈ D(Cφ),

is well-defined.
We call it a composition operator with a symbol φ.
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Subnormality of bounded composition operators

Theorem (Lambert 1988)

Let Cφ be a bounded composition operator on L2(µ). Then the
following two conditions are equivalent:

Cφ is subnormal,
for µ-a.e. x ∈ X, {hn(x)}∞n=0 is a Stieltjes moment
sequence,

where hn : X → [0,∞] is the Radon-Nikodym derivative of
the measure µ ◦ (φn)−1 with respect to µ.

(φ0 is the identity mapping on X, φn+1 = φ ◦ φn for n > 0.)

♣ There are two more conditions characterizing the
subnormality of bounded composition operators Cφ;
however all of them are equivalent in the unbounded case.
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A problem

Does Lambert’s theorem remain true for unbounded
composition operators in L2-spaces?
The answer is in the negative.
Formally normal (in particular, symmetric) composition
operators in L2spaces are always normal.
This means that there is no chance to adapt the methods
used in general operator theory to the context of
composition operators in L2-spaces.
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Composition operators versus weighted shifts

Theorem (Jabłoński, Jung & JS 2012)
Let Sλ be a weighted shift on a rootless directed tree
T = (V ,E) with positive weights λ = {λv}v∈V◦ . Suppose V is
countably infinite.

Then the operator Sλ is unitarily equivalent to a
composition operator C in an L2-space over a σ-finite
measure space.
Moreover, if the directed tree T is leafless, then C can be
made injective.
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A counterexample - a composition operator

Theorem (Jabłoński, Jung & JS 2012)

There exists an injective composition operator C in an L2-space
over a σ-finite measure space such that:

for µ-a.e. x ∈ X, {hn(x)}∞n=0 is a Stieltjes moment
sequence,
C is not hyponormal, thus it is not subnormal,
C is paranormal,
D∞(C) is a core for Cn for every n > 0.
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A problem

Find a criterion for subnormality of unbounded composition
operators in L2 spaces.
It should cover the case of bounded composition operators.
No restrictions on domains of powers of operators in
question.
The main difficulty: the known criteria for subnormality of
general Hilbert space operators (Bishop, Foiaş,
Szafraniec) do not help us to solve the problem.
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The conditional expectation

We assume that the transformation φ is nonsingular and
Cφ is densely defined.
If f : X → R+ is an A-measure function, then there exists a
unique (up to sets of µ-measure zero) φ−1(A)-measurable
function E(f ) : X → R+ such that∫

φ−1(∆)
f dµ =

∫
φ−1(∆)

E(f ) dµ, ∆ ∈ A.

E(f ) is called the conditional expectation of f with
respect to the σ-algebra φ−1(A).
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The consistency condition

P : X ×B(R+)→ [0,1] is said to be an A-measurable
family of probability measures if the set-function P(x , ·)
is a probability measure for every x ∈ X and the function
P(·, σ) is A-measurable for every σ ∈ B(R+).
We say that an A-measurable family of probability
measures P : X ×B(R+)→ [0,1] satisfies the
consistency condition if

E(P(·, σ))(x) =

∫
σ t P(φ(x),d t)

hφ(φ(x))
for µ-a.e. x ∈ X , σ ∈ B(R+),

where hφ = dµ◦φ−1

dµ .
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A criterion for subnormality

If Cφ is subnormal, then Cφ is densely defined and
injective.

Theorem (Budzyński, Jabłoński, Jung & JS 2013)
Let (X ,A, µ) be a σ-finite measure space and φ be a
nonsingular transformation of X such that Cφ is densely defined
and injective. Suppose there exists an A-measurable family
P : X ×B(R+)→ [0,1] of probability measures that satisfies
the consistency condition. Then Cφ is subnormal.
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Jan Stochel Uniwersytet Jagielloński Kraków Subnormality via directed trees



Generating moment sequences

Find the relationship between the consistency condition
and moments.

Theorem (Budzyński, Jabłoński, Jung & JS 2013)
(X ,A, µ) is a σ-finite measure space, φ is a nonsingular
transformation of X such that Cφ is densely defined and
injective, and P : X ×B(R+)→ [0,1] is an A-measurable family
of probability measures that satisfies the consistency condition.
Then

hφn (x) =

∫ ∞
0

tnP(x ,d t) for µ-a.e. x ∈ X , n = 0,1,2, . . . .

Recall that hφn = dµ◦(φn)−1

dµ .
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A class of composition operators

Let X be a nonempty set and φ : X → X be a mapping. Set

Eφ = {(x , y) ∈ X × X : x = φ(y)}.

Then (X ,Eφ) is a directed graph.
Note that for every y ∈ X , φ(y) is the parent of y . Hence,
φ−1({x}) can be thought of as the set of all children of x .
Connected directed graphs (X ,Eφ) whose vertices, all but
one, have valency one can be described explicitly.
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(X ,Eφ) with one branching vertex

Theorem (Budzyński, Jabłoński, Jung & JS 2014)
Let (X ,Eφ) be as above and let η ∈ {1,2,3, . . .} ∪ {∞}. Then
the following two conditions are equivalent:

(i) the directed graph (X ,Eφ) is connected and there exists ω ∈ X
such that card(φ−1({ω})) = η + 1 and card(φ−1({x})) = 1 for
every x ∈ X \ {ω},

(ii) (X ,Eφ) takes one of the following two forms:
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(X ,Eφ) with one branching vertex

(ii-a) there exist κ ∈ {0,1,2, . . .} and two disjoint systems {xi}κi=0 and
{xi,j}ηi=1

∞
j=1 of distinct points of X such that

X = {x0, . . . , xκ} ∪ {xi,j : i ∈ Jη, j > 1},

φ(x) =


xi,j−1 if x = xi,j with i ∈ Jη and j > 2,
xκ if x = xi,1 with i ∈ Jη or x = x0,

xi−1 if x = xi with i ∈ Jκ,

(ii-b) there exist two disjoint systems {xi}∞i=0 and {xi,j}η+1
i=1
∞
j=1 of

distinct points of X such that

X = {xi : i > 0} ∪ {xi,j : i ∈ Jη+1, j > 1},

φ(x) =


xi,j−1 if x = xi,j with i ∈ Jη+1 and j > 2,
x0 if x = xi,1 with i ∈ Jη+1,

xi+1 if x = xi with i > 0.
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The case (ii-a)

x0

xκ−1xκ−2

x1

xκ

x1,1 x2,1 x3,1

x1,2 x2,2 x3,2

x1,3 x2,3 x3,3

If η ∈ {1,2,3, . . .} ∪ {∞} and κ ∈ {0,1,2, . . .}, then X and
φ appearing in (ii-a) are denoted by Xη,κ and φη,κ,
respectively.
The directed graph (X ,Eφ) described in (ii-a) is not a
directed tree because it has a circuit.
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The case (ii-b)

The class of composition operators Cφ in L2(X , µ) with
symbol φ as in (ii-b), where µ is a discrete measure1 on X ,
coincides with the class of weighted shifts on the directed
tree Tη+1,∞ with positive weights.
Since the latter class was discussed earlier, we can
concentrate on composition operators Cφ in L2(X , µ) with
symbol φ as in (ii-a), where µ is a discrete measures on X .

1 i.e., µ({x}) > 0 for every x ∈ X .
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A counterexample - two branches

Theorem (Budzyński, Jabłoński, Jung & JS 2014)
Let X = X2,0 and φ = φ2,0. Then there exists a (σ-finite)
discrete measure µ on (X ,2X ) such that

(i) Cφ generates Stieltjes moment sequences,
(ii) Cφ is not hyponormal, thus it is not subnormal,
(iii) Cφ is paranormal,
(iv) D∞(Cφ) is a core for Cn

φ for every n > 0.

♠ The proof of the above theorem depends heavily on the
theory of classical moment problems especially on deep
results due to Berg-Valent [1994] and Berg-Durán [1995].
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Let X = X2,0 and φ = φ2,0. Then there exists a (σ-finite)
discrete measure µ on (X ,2X ) such that

(i) Cφ generates Stieltjes moment sequences,
(ii) Cφ is not hyponormal, thus it is not subnormal,
(iii) Cφ is paranormal,
(iv) D∞(Cφ) is a core for Cn

φ for every n > 0.

♠ The proof of the above theorem depends heavily on the
theory of classical moment problems especially on deep
results due to Berg-Valent [1994] and Berg-Durán [1995].
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D(S2) = {0}

In 1940 Naimark gave a remarkable example of a closed
symmetric operator S whose square has trivial domain, i.e.

D(S2) = {0}.

In 1983 Chernoff published a short example of a
semibounded closed symmetric operator S whose square
has trivial domain.
Schmüdgen in 1983 found out another pathological
behaviour of domains of powers of closed symmetric
operators (the density or lack of density of D(Sn+1) in
D(Sn) with respect to the graph norm of Sn).
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Weighted shifts and composition operators

As recently shown, symmetric weighted shifts on directed
trees are automatically bounded. The same is true for
composition operators in L2-spaces.
Quasinormal operators which form a subclass of
subnormal operators have the property that all their
powers are densely defined.
Formally normal weighted shifts on directed trees and
formally normal composition operators in L2 spaces are
normal operators, and thus all their powers are densely
defined.
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A question

Is it true that for every integer n > 1, there exists an
injective subnormal weighted shift on a directed tree
whose nth power is densely defined and the domain of its
(n + 1)th power is trivial.
A similar question can be asked for composition operators
in L2-spaces.
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Necessity

We say that a directed tree T = (V ,E) is extremal if for
every vertex u ∈ V , the set Chi(u) of all successors of u is
countably infinite. Up to isomorphism, there are only two
extremal directed trees, one with root, the other without.

Theorem (Jabłoński, Jung & JS 2014)
Let T = (V ,E) be a directed tree such that V ◦ 6= ∅. Then the
following conditions are equivalent:

(i) there exists a family λ = {λv}v∈V◦ of nonzero complex numbers
such that D(Sλ) = `2(V ) and D(S2

λ) = {0},

(ii) T is extremal.
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such that D(Sλ) = `2(V ) and D(S2

λ) = {0},

(ii) T is extremal.
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Example - Sλ

Using a criterion for subnormality of unbounded weighted
shifts on directed trees due to BJJS, we can prove the
following.

Theorem (Budzyński, Jabłoński, Jung & JS 2014)
Suppose T = (V ,E) is an extremal directed tree and
n ∈ {1,2,3, . . .}. Then there exists a subnormal weighted shift
Sλ on T such that Sn

λ is densely defined and D(Sn+1
λ ) = {0}.

Jan Stochel Uniwersytet Jagielloński Kraków Subnormality via directed trees



Example - Sλ

Using a criterion for subnormality of unbounded weighted
shifts on directed trees due to BJJS, we can prove the
following.
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Example - Cφ

Since each weighted shift on a rootless directed tree with
positive weights is unitarily equivalent to a composition
operator in an L2 space, we get the following.

Theorem (Budzyński, Jabłoński, Jung & JS 2014)
For every n ∈ {1,2,3, . . .}, there exists a subnormal injective
composition operator C in an L2-space over σ-finite measure
space such that Cn is densely defined and D(Cn+1) = {0}.

Jan Stochel Uniwersytet Jagielloński Kraków Subnormality via directed trees



Example - Cφ

Since each weighted shift on a rootless directed tree with
positive weights is unitarily equivalent to a composition
operator in an L2 space, we get the following.
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