Subnormality via directed trees

Jan Stochel Uniwersytet Jagielloński Kraków

International Workshop on Operator Theory

September 3-5, 2014

Queen's University Belfast, Northern Ireland

(4回) (日) (日)

1

II Bong Jung, Kyungpook National University, Daegu, Korea.
Zenon J. Jabłoński, Uniwersytet Jagielloński, Kraków, Poland.
Piotr Budzyński, Uniwersytet Rolniczy w Krakowie, Poland.

- By an operator in a complex Hilbert space *H* we mean a linear mapping *A*: *H* ⊇ *D*(*A*) → *H* defined on a vector subspace *D*(*A*) of *H*, called the domain of *A*;
- A is said to be **normal** if A is densely defined, closed and

 $A^*A = AA^*;$

equivalently: A is densely defined, $\mathcal{D}(A) = \mathcal{D}(A^*)$ and

 $||Af|| = ||A^*f||$ for every $f \in \mathcal{D}(A)$.

- By an operator in a complex Hilbert space *H* we mean a linear mapping *A*: *H* ⊇ *D*(*A*) → *H* defined on a vector subspace *D*(*A*) of *H*, called the domain of *A*;
- A is said to be **normal** if A is densely defined, closed and

$$A^*A = AA^*;$$

equivalently: A is densely defined, $\mathcal{D}(A) = \mathcal{D}(A^*)$ and

 $\|Af\| = \|A^*f\|$ for every $f \in \mathcal{D}(A)$.

- An operator *S* in \mathcal{H} is **subnormal** if *S* is densely defined and there exists a complex Hilbert space \mathcal{K} and a normal operator *N* in \mathcal{K} such that $\mathcal{H} \subseteq \mathcal{K}$ (isometric embedding) and Sh = Nh for every $h \in \mathcal{D}(S)$.
- An operator A in \mathcal{H} is **hyponormal** if A is densely defined, $\mathcal{D}(A) \subseteq \mathcal{D}(A^*)$ and $||A^*f|| \leq ||Af||$ for every $f \in \mathcal{D}(A)$.
- An operator A in H is paranormal if ||Af||² ≤ ||f|| ||A²f|| for all f ∈ D(A²).
- The following holds:

 $\{normal\} \varsubsetneq \{subnormal\} \varsubsetneq \{hyponormal\} \varsubsetneq \{paranormal\}.$

- An operator *S* in \mathcal{H} is **subnormal** if *S* is densely defined and there exists a complex Hilbert space \mathcal{K} and a normal operator *N* in \mathcal{K} such that $\mathcal{H} \subseteq \mathcal{K}$ (isometric embedding) and Sh = Nh for every $h \in \mathcal{D}(S)$.
- An operator A in \mathcal{H} is **hyponormal** if A is densely defined, $\mathcal{D}(A) \subseteq \mathcal{D}(A^*)$ and $||A^*f|| \leq ||Af||$ for every $f \in \mathcal{D}(A)$.
- An operator A in H is paranormal if ||Af||² ≤ ||f|||A²f|| for all f ∈ D(A²).
- The following holds:

 $\{normal\} \varsubsetneq \{subnormal\} \varsubsetneq \{hyponormal\} \varsubsetneq \{paranormal\}.$

- An operator *S* in \mathcal{H} is **subnormal** if *S* is densely defined and there exists a complex Hilbert space \mathcal{K} and a normal operator *N* in \mathcal{K} such that $\mathcal{H} \subseteq \mathcal{K}$ (isometric embedding) and Sh = Nh for every $h \in \mathcal{D}(S)$.
- An operator A in \mathcal{H} is **hyponormal** if A is densely defined, $\mathcal{D}(A) \subseteq \mathcal{D}(A^*)$ and $||A^*f|| \leq ||Af||$ for every $f \in \mathcal{D}(A)$.
- An operator A in H is paranormal if ||Af||² ≤ ||f|| ||A²f|| for all f ∈ D(A²).
- The following holds:

 $\{normal\} \varsubsetneq \{subnormal\} \varsubsetneq \{hyponormal\} \varsubsetneq \{paranormal\}.$

- An operator S in H is subnormal if S is densely defined and there exists a complex Hilbert space K and a normal operator N in K such that H ⊆ K (isometric embedding) and Sh = Nh for every h ∈ D(S).
- An operator A in \mathcal{H} is **hyponormal** if A is densely defined, $\mathcal{D}(A) \subseteq \mathcal{D}(A^*)$ and $||A^*f|| \leq ||Af||$ for every $f \in \mathcal{D}(A)$.
- An operator A in H is paranormal if ||Af||² ≤ ||f|| ||A²f|| for all f ∈ D(A²).
- The following holds:

 $\{\text{normal}\} \varsubsetneq \{\text{subnormal}\} \varsubsetneq \{\text{hyponormal}\} \varsubsetneq \{\text{paranormal}\}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- The theory of unbounded subnormal operators subsumes the theories of bounded subnormal operators and unbounded symmetric operators.
- bounded operators: Halmos (1950), Bram (1955), ... (two monographs by J. Conway).
- unbounded operators: Bishop (1957), Foiaş (1962), McDonald & Sundberg (1986), JS & Szafraniec (1985-89),

イロト イポト イヨト イヨト 三日

- The theory of unbounded subnormal operators subsumes the theories of bounded subnormal operators and unbounded symmetric operators.
- bounded operators: Halmos (1950), Bram (1955), ... (two monographs by J. Conway).
- unbounded operators: Bishop (1957), Foiaş (1962), McDonald & Sundberg (1986), JS & Szafraniec (1985-89),

イロト イポト イヨト イヨト 三日

. . .

- The theory of unbounded subnormal operators subsumes the theories of bounded subnormal operators and unbounded symmetric operators.
- bounded operators: Halmos (1950), Bram (1955), ... (two monographs by J. Conway).
- unbounded operators: Bishop (1957), Foiaş (1962), McDonald & Sundberg (1986), JS & Szafraniec (1985-89),

ヘロン 人間 とくほ とくほ とう

The creation operator of quantum mechanics

The creation operator a₊ is defined in L²(ℝ) by

$$a_+=\frac{1}{\sqrt{2}}\Big(x-\frac{d}{dx}\Big).$$

The creation operator a₊ is subnormal.

 The creation operator a₊ is unitarily equivalent to the operator of multiplication by the independent variable "z" in the Segal-Bargmann space of entire functions that are square integrable with respect to the Gaussian measure on the complex plane [Segal, Bargmann 1961].

・ 同 ト ・ ヨ ト ・ ヨ ト

The creation operator of quantum mechanics

The creation operator a₊ is defined in L²(ℝ) by

$$a_+=\frac{1}{\sqrt{2}}\Big(x-\frac{d}{dx}\Big).$$

- The creation operator *a*₊ is subnormal.
- The creation operator a₊ is unitarily equivalent to the operator of multiplication by the independent variable "z" in the Segal-Bargmann space of entire functions that are square integrable with respect to the Gaussian measure on the complex plane [Segal, Bargmann 1961].

ヘロン ヘアン ヘビン ヘビン

• The creation operator a_+ is defined in $L^2(\mathbb{R})$ by

$$a_+=\frac{1}{\sqrt{2}}\Big(x-\frac{d}{dx}\Big).$$

- The creation operator *a*₊ is subnormal.
- The creation operator a₊ is unitarily equivalent to the operator of multiplication by the independent variable "z" in the Segal-Bargmann space of entire functions that are square integrable with respect to the Gaussian measure on the complex plane [Segal, Bargmann 1961].

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- An operator S in H is said to be symmetric (resp., selfadjoint) if S is densely defined and S ⊆ S* (respectively, S = S*).
- Clearly, selfadjoint operators are normal.
- A symmetric operator *S* in *H* is subnormal because it has a selfadjoint extension possibly in a larger Hilbert space [Naimark].
- *S* has a selfadjoint extension **within** \mathcal{H} if and only if the deficiency indices of *S* are equal [von Neumann].

・ロト ・四ト ・ヨト ・ヨト

- An operator S in H is said to be symmetric (resp., selfadjoint) if S is densely defined and S ⊆ S* (respectively, S = S*).
- Clearly, selfadjoint operators are normal.
- A symmetric operator *S* in *H* is subnormal because it has a selfadjoint extension possibly in a larger Hilbert space [Naimark].
- *S* has a selfadjoint extension **within** \mathcal{H} if and only if the deficiency indices of *S* are equal [von Neumann].

・ロト ・四ト ・ヨト ・ヨト

- An operator S in H is said to be symmetric (resp., selfadjoint) if S is densely defined and S ⊆ S* (respectively, S = S*).
- Clearly, selfadjoint operators are normal.
- A symmetric operator *S* in *H* is subnormal because it has a selfadjoint extension possibly in a larger Hilbert space [Naimark].
- *S* has a selfadjoint extension **within** \mathcal{H} if and only if the deficiency indices of *S* are equal [von Neumann].

・ロン ・聞 と ・ ヨン ・ ヨン・

- An operator S in H is said to be symmetric (resp., selfadjoint) if S is densely defined and S ⊆ S* (respectively, S = S*).
- Clearly, selfadjoint operators are normal.
- A symmetric operator *S* in *H* is subnormal because it has a selfadjoint extension possibly in a larger Hilbert space [Naimark].
- *S* has a selfadjoint extension **within** \mathcal{H} if and only if the deficiency indices of *S* are equal [von Neumann].

・ロト ・ 理 ト ・ ヨ ト ・

symmetric ~> selfadjoint

- formally normal ~> normal ?
- An operator A in H is said to be formally normal if A is densely defined, D(A) ⊆ D(A*) and ||Af|| = ||A*f|| for every f ∈ D(A);
- The following holds:

 $\{normal\} \varsubsetneq \{formally normal\} \varsubsetneq \{hyponormal\},\$

and

```
symmetric \} \subsetneq formally normal \}.
```

・ロト ・ 理 ト ・ ヨ ト ・

- symmetric → selfadjoint
- formally normal ~→ normal ?
- An operator A in H is said to be formally normal if A is densely defined, D(A) ⊆ D(A*) and ||Af|| = ||A*f|| for every f ∈ D(A);
- The following holds:

 $\{normal\} \varsubsetneq \{formally normal\} \varsubsetneq \{hyponormal\},\$

and

 $\{$ symmetric $\} \subsetneq \{$ formally normal $\}.$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

- symmetric ~> selfadjoint
- formally normal ~→ normal ?
- An operator A in H is said to be formally normal if A is densely defined, D(A) ⊆ D(A*) and ||Af|| = ||A*f|| for every f ∈ D(A);
- The following holds:

 $\{normal\} \varsubsetneq \{formally normal\} \varsubsetneq \{hyponormal\},\$

and

 $\{$ symmetric $\} \subsetneq \{$ formally normal $\}.$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- symmetric ~> selfadjoint
- formally normal ~→ normal ?
- An operator A in H is said to be formally normal if A is densely defined, D(A) ⊆ D(A*) and ||Af|| = ||A*f|| for every f ∈ D(A);
- The following holds:

```
\{normal\} \varsubsetneq \{formally normal\} \varsubsetneq \{hyponormal\},\
```

and

```
\{symmetric\} \subsetneq \{formally normal\}.
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Formally normal operators **may not be** subnormal [Coddington 1965].

There exist a nonsubnormal formally normal operator A and a polynomial p ∈ C[Z, Z] of degree 3 such that D(A) is invariant for A and A*, and

 $p(A, A^*)f = 0$ for every $f \in \mathcal{D}(A)$;

ヘロト 人間 とくほとく ほとう

3 is the smallest possible degree [JS 1991].

• $\mathbf{p} = \mathbf{Y}(\mathbf{Y} - \mathbf{X}^2)$ where $\mathbf{X} = \frac{1}{2}(\mathbf{Z} + \overline{\mathbf{Z}})$ and $\mathbf{Y} = \frac{1}{2i}(\mathbf{Z} - \overline{\mathbf{Z}})$.

 Hence, there are unbounded operators generating Stieltjes moment sequences that are not subnormal.

- Formally normal operators may not be subnormal [Coddington 1965].
- There exist a nonsubnormal formally normal operator A and a polynomial p ∈ C[Z, Z] of degree 3 such that D(A) is invariant for A and A*, and

 $p(A, A^*)f = 0$ for every $f \in \mathcal{D}(A)$;

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- 3 is the smallest possible degree [JS 1991].
- $\mathbf{p} = \mathbf{Y}(\mathbf{Y} \mathbf{X}^2)$ where $\mathbf{X} = \frac{1}{2}(\mathbf{Z} + \overline{\mathbf{Z}})$ and $\mathbf{Y} = \frac{1}{2i}(\mathbf{Z} \overline{\mathbf{Z}})$.
- Hence, there are unbounded operators generating Stieltjes moment sequences that are not subnormal.

- Formally normal operators may not be subnormal [Coddington 1965].
- There exist a nonsubnormal formally normal operator A and a polynomial p ∈ C[Z, Z] of degree 3 such that D(A) is invariant for A and A*, and

$$p(A, A^*)f = 0$$
 for every $f \in \mathcal{D}(A)$;

・ロン ・四 と ・ ヨ と ・ ヨ と …

3 is the smallest possible degree [JS 1991].

•
$$\mathbf{p} = \mathbf{Y}(\mathbf{Y} - \mathbf{X}^2)$$
 where $\mathbf{X} = \frac{1}{2}(\mathbf{Z} + \overline{\mathbf{Z}})$ and $\mathbf{Y} = \frac{1}{2i}(\mathbf{Z} - \overline{\mathbf{Z}})$.

 Hence, there are unbounded operators generating Stieltjes moment sequences that are not subnormal.

- Formally normal operators may not be subnormal [Coddington 1965].
- There exist a nonsubnormal formally normal operator A and a polynomial p ∈ C[Z, Z] of degree 3 such that D(A) is invariant for A and A*, and

$$p(A, A^*)f = 0$$
 for every $f \in \mathcal{D}(A)$;

・ 同 ト ・ ヨ ト ・ ヨ ト

3 is the smallest possible degree [JS 1991].

•
$$\mathbf{p} = \mathbf{Y}(\mathbf{Y} - \mathbf{X}^2)$$
 where $\mathbf{X} = \frac{1}{2}(\mathbf{Z} + \overline{\mathbf{Z}})$ and $\mathbf{Y} = \frac{1}{2i}(\mathbf{Z} - \overline{\mathbf{Z}})$.

 Hence, there are unbounded operators generating Stieltjes moment sequences that are not subnormal. A sequence {γ_n}[∞]_{n=0} of nonnegative real numbers is called a Stieltjes moment sequence if there exists a (positive) Borel measure μ on [0, ∞) such that

$$\gamma_n = \int_0^\infty x^n \,\mathrm{d}\,\mu(x), \quad n \geqslant 0;$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへの

such a μ is called a **representing** measure of the sequence $\{\gamma_n\}_{n=0}^{\infty}$.

We say that a Stieltjes moment sequence {γ_n}[∞]_{n=0} is determinate if it has a unique representing measure; otherwise, we say that {γ_n}[∞]_{n=0} is indeterminate.

A sequence {γ_n}[∞]_{n=0} of nonnegative real numbers is called a Stieltjes moment sequence if there exists a (positive) Borel measure μ on [0, ∞) such that

$$\gamma_n = \int_0^\infty x^n \,\mathrm{d}\,\mu(x), \quad n \geqslant 0;$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへの

such a μ is called a **representing** measure of the sequence $\{\gamma_n\}_{n=0}^{\infty}$.

We say that a Stieltjes moment sequence {γ_n}[∞]_{n=0} is determinate if it has a unique representing measure; otherwise, we say that {γ_n}[∞]_{n=0} is indeterminate.

A sequence {γ_n}[∞]_{n=0} of nonnegative real numbers is called a Stieltjes moment sequence if there exists a (positive) Borel measure μ on [0, ∞) such that

$$\gamma_n = \int_0^\infty x^n \,\mathrm{d}\,\mu(x), \quad n \geqslant 0;$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

such a μ is called a **representing** measure of the sequence $\{\gamma_n\}_{n=0}^{\infty}$.

We say that a Stieltjes moment sequence {γ_n}[∞]_{n=0} is determinate if it has a unique representing measure; otherwise, we say that {γ_n}[∞]_{n=0} is indeterminate.

Generating Stieltjes moment sequences

• We say that an operator *S* in \mathcal{H} generates Stieltjes moment sequences if the set $\mathcal{D}^{\infty}(S) := \bigcap_{n=0}^{\infty} \mathcal{D}(S^n)$ of all C^{∞} -vectors of *S* is dense in \mathcal{H} and $\{\|S^n f\|^2\}_{n=0}^{\infty}$ is a Stieltjes moment sequence for every $f \in \mathcal{D}^{\infty}(S)$.

Theorem (Lambert 1976)

A bounded operator on H is subnormal if and only if it generates Stieltjes moment sequences.

<ロ> (四) (四) (三) (三) (三)

Generating Stieltjes moment sequences

We say that an operator S in H generates Stieltjes moment sequences if the set D[∞](S) := ∩[∞]_{n=0} D(Sⁿ) of all C[∞]-vectors of S is dense in H and {||Sⁿf||²}[∞]_{n=0} is a Stieltjes moment sequence for every f ∈ D[∞](S).

Theorem (Lambert 1976)

A bounded operator on \mathcal{H} is subnormal if and only if it generates Stieltjes moment sequences.

ヘロン ヘアン ヘビン ヘビン

• Lambert's theorem is not true for unbounded operators.

- Recall that there are nonsubnormal formally normal operators (hence hyponormal) which generate Stieltjes moment sequences.
- The question is whether there are closed nonhyponormal operators that generate Stieltjes moment sequences?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Lambert's theorem is not true for unbounded operators.
- Recall that there are nonsubnormal formally normal operators (hence hyponormal) which generate Stieltjes moment sequences.
- The question is whether there are closed nonhyponormal operators that generate Stieltjes moment sequences?

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Lambert's theorem is not true for unbounded operators.
- Recall that there are nonsubnormal formally normal operators (hence hyponormal) which generate Stieltjes moment sequences.
- The question is whether there are closed nonhyponormal operators that generate Stieltjes moment sequences?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Directed trees

- $V^{\circ} = V \setminus \{\text{root}\}$ if \mathcal{T} has a root and $V^{\circ} = V$ if \mathcal{T} is rootless.
- $\mathcal{T} = (V, E)$ is a directed tree (V = vertices, E = edges).

프 > 프

Directed trees

V° = V \ {root} if 𝔅 has a root and V° = V if 𝔅 is rootless.
𝔅 = (V, E) is a directed tree (V = vertices, E = edges).

프 > 프
$\ell^2(V)$ over a directed tree

 \$\ell^2(V)\$ is the Hilbert space of square summable complex functions on V with the standard inner product

$$\langle f,g\rangle = \sum_{u\in V} f(u)\overline{g(u)}, \quad f,g\in \ell^2(V).$$

• For $u \in V$, we define $e_u \in \ell^2(V)$ by

$$e_u(v) = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{if } u \neq v. \end{cases}$$

◆□> ◆◎> ◆注> ◆注>

 $\{e_u\}_{u\in V}$ is an orthonormal basis of $\ell^2(V)$. • \mathscr{E}_V = the linear span of the set $\{e_u : u \in V\}$.

$\ell^2(V)$ over a directed tree

 \$\ell^2(V)\$ is the Hilbert space of square summable complex functions on V with the standard inner product

$$\langle f, g \rangle = \sum_{u \in V} f(u) \overline{g(u)}, \quad f, g \in \ell^2(V).$$

• For $u \in V$, we define $e_u \in \ell^2(V)$ by

$$e_u(v) = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{if } u \neq v. \end{cases}$$

(日本) (日本) (日本)

 $\{e_u\}_{u \in V}$ is an orthonormal basis of $\ell^2(V)$. • \mathscr{E}_V = the linear span of the set $\{e_u : u \in V\}$.

$\ell^2(V)$ over a directed tree

\$\ell^2(V)\$ is the Hilbert space of square summable complex functions on V with the standard inner product

$$\langle f, g \rangle = \sum_{u \in V} f(u) \overline{g(u)}, \quad f, g \in \ell^2(V).$$

• For $u \in V$, we define $e_u \in \ell^2(V)$ by

$$e_u(v) = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{if } u \neq v. \end{cases}$$

▲圖 ▶ ▲ 理 ▶ ▲ 理 ▶ …

 $\{e_u\}_{u\in V}$ is an orthonormal basis of $\ell^2(V)$. • \mathscr{E}_V = the linear span of the set $\{e_u : u \in V\}$.

- Let λ = {λ_ν}_{ν∈V°} be a system of complex numbers (called weights).
- Define the operator S_{λ} in $\ell^2(V)$ by

$$\mathcal{D}(S_{\lambda}) = \left\{ f \in \ell^{2}(V) \colon S_{\lambda}f \in \ell^{2}(V) \right\},$$

 $(S_{\lambda}f)(v) = \begin{cases} \lambda_{v} \cdot f(\operatorname{par}(v)) & \text{if } v \in V^{\circ}, \\ 0 & \text{if } v = \operatorname{root}, \end{cases}$ $f \in \mathcal{D}(S_{\lambda}).$

- The operator S_λ is called a weighted shift on the directed tree *T* with weights λ [Jabłoński, Jung & JS 2012].
- Weighted adjacency operators [Fujii, Sasaoka & Watatani 1991]; weighted composition operators [Carlson 1990 discrete and bounded], [Campbell & Hornor 1993 bounded and partially unbounded].

- Let λ = {λ_ν}_{ν∈V°} be a system of complex numbers (called weights).
- Define the operator S_{λ} in $\ell^2(V)$ by

$$\mathcal{D}(S_{\lambda}) = \left\{ f \in \ell^2(V) \colon S_{\lambda}f \in \ell^2(V) \right\},$$

 $(S_{\lambda}f)(v) = \begin{cases} \lambda_v \cdot f(\operatorname{par}(v)) & \text{if } v \in V^\circ, \\ 0 & \text{if } v = \operatorname{root}, \end{cases}$ $f \in \mathcal{D}(S_{\lambda}).$

- The operator S_λ is called a weighted shift on the directed tree *T* with weights λ [Jabłoński, Jung & JS 2012].
- Weighted adjacency operators [Fujii, Sasaoka & Watatani 1991]; weighted composition operators [Carlson 1990 discrete and bounded], [Campbell & Hornor 1993 bounded and partially unbounded].

- Let λ = {λ_ν}_{ν∈V°} be a system of complex numbers (called weights).
- Define the operator S_{λ} in $\ell^2(V)$ by

$$\mathcal{D}(S_{\lambda}) = \left\{ f \in \ell^{2}(V) \colon S_{\lambda}f \in \ell^{2}(V) \right\},$$

 $(S_{\lambda}f)(v) = \begin{cases} \lambda_{v} \cdot f(\operatorname{par}(v)) & \text{if } v \in V^{\circ}, \\ 0 & \text{if } v = \operatorname{root}, \end{cases}$ $f \in \mathcal{D}(S_{\lambda}).$

The operator S_λ is called a weighted shift on the directed tree *S* with weights λ [Jabłoński, Jung & JS 2012].

 Weighted adjacency operators [Fujii, Sasaoka & Watatani 1991]; weighted composition operators [Carlson 1990 discrete and bounded], [Campbell & Hornor 1993 bounded and partially unbounded].

- Let λ = {λ_ν}_{ν∈V°} be a system of complex numbers (called weights).
- Define the operator S_{λ} in $\ell^2(V)$ by

$$\mathcal{D}(S_{\lambda}) = \left\{ f \in \ell^2(V) \colon S_{\lambda} f \in \ell^2(V) \right\},$$

 $(S_{\lambda} f)(v) = \left\{ egin{array}{ll} \lambda_v \cdot f(\operatorname{par}(v)) & ext{if } v \in V^\circ, \\ 0 & ext{if } v = \operatorname{root}, \end{array}
ight.$

- The operator S_λ is called a weighted shift on the directed tree *S* with weights λ [Jabłoński, Jung & JS 2012].
- Weighted adjacency operators [Fujii, Sasaoka & Watatani 1991]; weighted composition operators [Carlson 1990 discrete and bounded], [Campbell & Hornor 1993 bounded and partially unbounded].

Figure

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Elementary properties of w.s.'s on directed trees

• Each weighted shift S_{λ} on a directed tree \mathcal{T} is closed.

• A weighted shift S_{λ} is densely defined if and only if $\mathscr{E}_V \subseteq \mathcal{D}(S_{\lambda})$.

• If S_{λ} is densely defined, then

$$S_{\lambda} e_{u} = \sum_{v \in \operatorname{Chi}(u)} \lambda_{v} e_{v}, \quad u \in V,$$

<ロ> (四) (四) (三) (三) (三)

where $Chi(u) = \{v \in V : (u, v) \in E\}$ is the set of all **children** (or **successors**) of the vertex *u*.

Elementary properties of w.s.'s on directed trees

- Each weighted shift S_{λ} on a directed tree \mathcal{T} is closed.
- A weighted shift S_{λ} is densely defined if and only if $\mathscr{E}_{V} \subseteq \mathcal{D}(S_{\lambda})$.
- If S_{λ} is densely defined, then

$$S_{\lambda} e_{u} = \sum_{v \in \operatorname{Chi}(u)} \lambda_{v} e_{v}, \quad u \in V,$$

<ロ> (四) (四) (三) (三) (三) (三)

where $Chi(u) = \{v \in V : (u, v) \in E\}$ is the set of all **children** (or **successors**) of the vertex *u*.

Elementary properties of w.s.'s on directed trees

- Each weighted shift S_{λ} on a directed tree \mathcal{T} is closed.
- A weighted shift S_{λ} is densely defined if and only if $\mathscr{E}_{V} \subseteq \mathcal{D}(S_{\lambda})$.
- If S_{λ} is densely defined, then

$$S_{\lambda} e_{u} = \sum_{v \in Chi(u)} \lambda_{v} e_{v}, \quad u \in V,$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

where $Chi(u) = \{v \in V : (u, v) \in E\}$ is the set of all **children** (or **successors**) of the vertex *u*.

Theorem (Budzyński, Jabłoński, Jung & JS 2012)

Let S_{λ} be a densely defined weighted shift on a leafless directed tree $\mathscr{T} = (V, E)$ with nonzero weights $\lambda = \{\lambda_v\}_{v \in V^\circ}$. Then S_{λ} jest hyponormal if and only if

$$\sum_{\nu \in \mathsf{Chi}(u)} \frac{|\lambda_{\nu}|^2}{\|S_{\lambda} e_{\nu}\|^2} \leqslant 1, \quad u \in V.$$

イロト イポト イヨト イヨト 三日

(Chi(u) is the set of all children of u).

The directed tree $\mathscr{T}_{\eta,\kappa}$.

 $\eta \in \{\mathbf{2},\mathbf{3},\mathbf{4},\ldots\} \cup \{\infty\} \text{ and } \kappa \in \{\mathbf{0},\mathbf{1},\mathbf{2},\ldots\} \cup \{\infty\}.$

 $\mathscr{T}_{\eta,\kappa}$ is a directed tree with one branching vertex and η branches; its trunk consists of $\kappa + 1$ vertices (counting the branching vertex):

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

 A nonhyponormal weighted shift S_λ that generates Stieltjes moment sequences will be constructed on the directed tree *T*_{∞,κ}.

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

• Let $\{\gamma_n\}_{n=-\kappa}^{\infty} \subseteq (0,\infty)$ be a sequence such that

$$\gamma_0 = 1$$

 $\gamma_n = \int_0^\infty x^n d\nu(x), \quad n \in \mathbb{Z}, \ n \ge -\kappa,$

for some Borel measure ν on \mathbb{R}_+ .

 Let ρ be a representing measure of the Stieltjes moment sequence {γ_{n+1}}[∞]_{n=0} such that

$$0 < \int_0^\infty \frac{1}{x^n} \,\mathrm{d}\,\rho(x) < \infty, \quad n \in J_{\kappa+1},$$

$$\operatorname{card}(\operatorname{supp}(\rho)) \ge \begin{cases} \eta & \text{if } \eta < \infty, \\ \aleph_0 & \text{if } \eta = \infty, \end{cases}$$

where $J_{\iota} = \{1, 2, \dots, \iota\} \setminus \{\infty\}$ for $\iota \in \{1, 2, \dots\} \cup \{\infty\}$.

• Let $\{\gamma_n\}_{n=-\kappa}^{\infty} \subseteq (0,\infty)$ be a sequence such that

$$\gamma_0 = 1$$

 $\gamma_n = \int_0^\infty x^n d\nu(x), \quad n \in \mathbb{Z}, \ n \ge -\kappa,$

for some Borel measure ν on \mathbb{R}_+ .

 Let ρ be a representing measure of the Stieltjes moment sequence {γ_{n+1}}[∞]_{n=0} such that

$$0 < \int_0^\infty \frac{1}{x^n} d\rho(x) < \infty, \quad n \in J_{\kappa+1},$$

$$\operatorname{card}(\operatorname{supp}(\rho)) \ge \begin{cases} \eta & \text{if } \eta < \infty, \\ \aleph_0 & \text{if } \eta = \infty, \end{cases}$$

where $J_{\iota} = \{1, 2, \dots, \iota\} \setminus \{\infty\}$ for $\iota \in \{1, 2, \dots\} \cup \{\infty\}$.

Let {Ω_i}^η_{i=1} be a sequence of pairwise disjoint Borel subsets of the interval (0,∞) such that

$$egin{aligned} &
ho(arOmega_i)> m{0}, \quad i\in J_\eta, \ &igsqcup_{i\in J_\eta} arOmega_i = (m{0},\infty). \end{aligned}$$

(Such a partition of the set $(0, \infty)$ always exists.)

 Define the sequence {µ_{i,1}}_{i∈J_η} of Borel probability measures on ℝ₊ by

$$\mu_{i,1}(\sigma) = rac{1}{
ho(\Omega_i)}
ho(\Omega_i \cap \sigma), \quad \sigma \in \mathfrak{B}(\mathbb{R}_+), \ i \in J_\eta.$$

<ロ> (四) (四) (三) (三) (三) (三)

Let {Ω_i}^η_{i=1} be a sequence of pairwise disjoint Borel subsets of the interval (0,∞) such that

$$egin{aligned} &
ho(arOmega_i) > \mathbf{0}, \quad i \in J_\eta, \ & igsqcup_{i \in J_\eta} arOmega_i = (\mathbf{0}, \infty). \end{aligned}$$

(Such a partition of the set $(0, \infty)$ always exists.)

 Define the sequence {µ_{i,1}}_{i∈J_η} of Borel probability measures on ℝ₊ by

$$\mu_{i,1}(\sigma) = rac{1}{
ho(\Omega_i)}
ho(\Omega_i\cap\sigma), \quad \sigma\in\mathfrak{B}(\mathbb{R}_+), \ i\in J_\eta.$$

・ロン ・聞 と ・ ヨ と ・ ヨ と

• Next we define the family $\{\lambda_{i,j} : i \in J_{\eta}, j \in J_{\infty}\} \subseteq (0, \infty)$ by

$$\lambda_{i,j} = \begin{cases} \sqrt{\rho(\Omega_i)} & \text{for } j = 1, \\ \sqrt{\frac{\int_0^\infty x^{j-1} \, \mathrm{d}\,\mu_{i,1}(x)}{\int_0^\infty x^{j-2} \, \mathrm{d}\,\mu_{i,1}(x)}} & \text{for } j \geqslant 2, \end{cases} \quad i \in J_\eta.$$

• If $\kappa > 0$, then we define $\{\lambda_{-k}\}_{k=0}^{\kappa-1} \subseteq (0,\infty)$ by

$$\lambda_{-k} = \sqrt{\frac{\gamma_{-k}}{\gamma_{-(k+1)}}}, \quad k \in \mathbb{Z}_+, \ 0 \leqslant k < \kappa.$$

- Let S_λ be the weighted shift on 𝒮_{η,κ} with the above-defined weights λ = {λ_ν}_{ν∈V^o_{η,κ}}.
- S_{λ} depends on $\left(\{\gamma_n\}_{n=-\kappa}^{\infty}, \rho, \{\Omega_i\}_{i=1}^{\eta}\right)$.

• Next we define the family $\{\lambda_{i,j} : i \in J_{\eta}, j \in J_{\infty}\} \subseteq (0, \infty)$ by

$$\lambda_{i,j} = \begin{cases} \sqrt{\rho(\Omega_i)} & \text{for } j = 1, \\ \sqrt{\frac{\int_0^\infty x^{j-1} \, \mathrm{d}\,\mu_{i,1}(x)}{\int_0^\infty x^{j-2} \, \mathrm{d}\,\mu_{i,1}(x)}} & \text{for } j \geqslant 2, \end{cases} \quad i \in J_\eta.$$

• If $\kappa > 0$, then we define $\{\lambda_{-k}\}_{k=0}^{\kappa-1} \subseteq (0,\infty)$ by

$$\lambda_{-k} = \sqrt{\frac{\gamma_{-k}}{\gamma_{-(k+1)}}}, \quad k \in \mathbb{Z}_+, \, \mathbf{0} \leqslant k < \kappa.$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

- Let S_λ be the weighted shift on 𝒮_{η,κ} with the above-defined weights λ = {λ_ν}_{ν∈V^o_{n,κ}}.
- S_{λ} depends on $\left(\{\gamma_n\}_{n=-\kappa}^{\infty}, \rho, \{\Omega_i\}_{i=1}^{\eta}\right)$.

• Next we define the family $\{\lambda_{i,j} : i \in J_{\eta}, j \in J_{\infty}\} \subseteq (0, \infty)$ by

$$\lambda_{i,j} = \begin{cases} \sqrt{\rho(\Omega_i)} & \text{for } j = 1, \\ \sqrt{\frac{\int_0^\infty x^{j-1} \, \mathrm{d}\,\mu_{i,1}(x)}{\int_0^\infty x^{j-2} \, \mathrm{d}\,\mu_{i,1}(x)}} & \text{for } j \geqslant 2, \end{cases} \quad i \in J_\eta.$$

• If $\kappa > 0$, then we define $\{\lambda_{-k}\}_{k=0}^{\kappa-1} \subseteq (0,\infty)$ by

$$\lambda_{-k} = \sqrt{\frac{\gamma_{-k}}{\gamma_{-(k+1)}}}, \quad k \in \mathbb{Z}_+, \, \mathbf{0} \leqslant k < \kappa.$$

(雪) (ヨ) (ヨ)

- Let S_λ be the weighted shift on 𝒢_{η,κ} with the above-defined weights λ = {λ_ν}_{ν∈V^o_{n,κ}}.
- S_{λ} depends on $\left(\{\gamma_n\}_{n=-\kappa}^{\infty}, \rho, \{\Omega_i\}_{i=1}^{\eta}\right)$.

• Next we define the family $\{\lambda_{i,j} : i \in J_{\eta}, j \in J_{\infty}\} \subseteq (0, \infty)$ by

$$\lambda_{i,j} = \begin{cases} \sqrt{\rho(\Omega_i)} & \text{for } j = 1, \\ \sqrt{\frac{\int_0^\infty x^{j-1} \, \mathrm{d}\,\mu_{i,1}(x)}{\int_0^\infty x^{j-2} \, \mathrm{d}\,\mu_{i,1}(x)}} & \text{for } j \geqslant 2, \end{cases} \quad i \in J_\eta.$$

• If $\kappa > 0$, then we define $\{\lambda_{-k}\}_{k=0}^{\kappa-1} \subseteq (0,\infty)$ by

$$\lambda_{-k} = \sqrt{\frac{\gamma_{-k}}{\gamma_{-(k+1)}}}, \quad k \in \mathbb{Z}_+, \, \mathbf{0} \leqslant k < \kappa.$$

- Let S_λ be the weighted shift on 𝒮_{η,κ} with the above-defined weights λ = {λ_ν}_{ν∈V^o_{η,κ}}.
- S_{λ} depends on $\left(\{\gamma_n\}_{n=-\kappa}^{\infty}, \rho, \{\Omega_i\}_{i=1}^{\eta}\right)$.

Theorem (Jabłoński, Jung & JS 2012)

Under the above assumptions and definitions, we have

• $\mathcal{E}_{V_{\eta,\kappa}} \subseteq \mathcal{D}^{\infty}(S_{\lambda}),$

- {||Sⁿ_λf||²}[∞]_{n=0} is a Stieltjes moment sequence for every f ∈ D[∞](S_λ), so S_λ generates Stieltjes moment sequences
- S_{λ} is paranormal,
- S_{λ} is hyponormal if and only if $\sum_{i \in J_{\eta}} \frac{\lambda_{i,1}^{2}}{\|S_{\lambda}e_{i,1}\|^{2}} \leq 1$,

•
$$\sum_{i \in J_{\eta}} \frac{\lambda_{i,1}^2}{\|S_{\lambda} e_{i,1}\|^2} \leqslant \int_0^\infty \frac{1}{x} \operatorname{d} \rho(x),$$

 the above inequality becomes equality if and only if for every i ∈ J_η, there exists q_i ∈ Ω_i such that

Theorem (Jabłoński, Jung & JS 2012)

Under the above assumptions and definitions, we have

•
$$\mathcal{E}_{V_{\eta,\kappa}} \subseteq \mathcal{D}^{\infty}(\mathcal{S}_{\lambda})$$
,

- {||Sⁿ_λf||²}[∞]_{n=0} is a Stieltjes moment sequence for every f ∈ D[∞](S_λ), so S_λ generates Stieltjes moment sequences,
- S_{λ} is paranormal,
- S_{λ} is hyponormal if and only if $\sum_{i \in J_{\eta}} \frac{\lambda_{i,1}^{2}}{\|S_{\lambda}e_{i,1}\|^{2}} \leq 1$,

•
$$\sum_{i\in J_{\eta}} \frac{\lambda_{i,1}^2}{\|S_{\lambda}e_{i,1}\|^2} \leqslant \int_0^\infty \frac{1}{x} \operatorname{d} \rho(x),$$

 the above inequality becomes equality if and only if for every i ∈ J_η, there exists q_i ∈ Ω_i such that

Theorem (Jabłoński, Jung & JS 2012)

Under the above assumptions and definitions, we have

- $\mathcal{E}_{V_{\eta,\kappa}} \subseteq \mathcal{D}^{\infty}(\mathcal{S}_{\lambda})$,
- {||Sⁿ_λf||²}[∞]_{n=0} is a Stieltjes moment sequence for every f ∈ D[∞](S_λ), so S_λ generates Stieltjes moment sequences,
- S_{λ} is paranormal,
- S_{λ} is hyponormal if and only if $\sum_{i \in J_{\eta}} \frac{\lambda_{i,1}^2}{\|S_{\lambda}e_{i,1}\|^2} \leq 1$,
- $\sum_{i\in J_{\eta}} \frac{\lambda_{i,1}^2}{\|S_{\lambda}e_{i,1}\|^2} \leqslant \int_0^\infty \frac{1}{x} \operatorname{d} \rho(x),$
- the above inequality becomes equality if and only if for every i ∈ J_η, there exists q_i ∈ Ω_i such that

Theorem (Jabłoński, Jung & JS 2012)

Under the above assumptions and definitions, we have

- $\mathcal{E}_{V_{\eta,\kappa}} \subseteq \mathcal{D}^{\infty}(\mathcal{S}_{\lambda})$,
- {||Sⁿ_λf||²}[∞]_{n=0} is a Stieltjes moment sequence for every f ∈ D[∞](S_λ), so S_λ generates Stieltjes moment sequences,
- S_{λ} is paranormal,
- S_{λ} is hyponormal if and only if $\sum_{i \in J_{\eta}} \frac{\lambda_{i,1}^2}{\|S_{\lambda}e_{i,1}\|^2} \leq 1$,
- $\sum_{i \in J_{\eta}} \frac{\lambda_{i,1}^2}{\|S_{\lambda}e_{i,1}\|^2} \leqslant \int_0^\infty \frac{1}{x} \operatorname{d} \rho(x),$
- the above inequality becomes equality if and only if for every i ∈ J_η, there exists q_i ∈ Ω_i such that

Theorem (Jabłoński, Jung & JS 2012)

Under the above assumptions and definitions, we have

- $\mathcal{E}_{V_{\eta,\kappa}} \subseteq \mathcal{D}^{\infty}(\mathcal{S}_{\lambda})$,
- {||Sⁿ_λf||²}[∞]_{n=0} is a Stieltjes moment sequence for every f ∈ D[∞](S_λ), so S_λ generates Stieltjes moment sequences,
- S_λ is paranormal,
- S_{λ} is hyponormal if and only if $\sum_{i \in J_{\eta}} \frac{\lambda_{i,1}^2}{\|S_{\lambda}e_{i,1}\|^2} \leq 1$,
- $\sum_{i\in J_{\eta}} \frac{\lambda_{i,1}^2}{\|S_{\lambda}e_{i,1}\|^2} \leqslant \int_0^\infty \frac{1}{x} \operatorname{d} \rho(x),$
- the above inequality becomes equality if and only if for every i ∈ J_η, there exists q_i ∈ Ω_i such that

Theorem (Jabłoński, Jung & JS 2012)

Under the above assumptions and definitions, we have

- $\mathcal{E}_{V_{\eta,\kappa}} \subseteq \mathcal{D}^{\infty}(\mathcal{S}_{\lambda})$,
- {||Sⁿ_λf||²}[∞]_{n=0} is a Stieltjes moment sequence for every f ∈ D[∞](S_λ), so S_λ generates Stieltjes moment sequences,
- S_λ is paranormal,
- S_{λ} is hyponormal if and only if $\sum_{i \in J_{\eta}} \frac{\lambda_{i,1}^2}{\|S_{\lambda}e_{i,1}\|^2} \leq 1$,

•
$$\sum_{i\in J_{\eta}} \frac{\lambda_{i,1}^2}{\|S_{\lambda}e_{i,1}\|^2} \leqslant \int_0^\infty \frac{1}{x} \mathrm{d}\rho(x),$$

 the above inequality becomes equality if and only if for every i ∈ J_η, there exists q_i ∈ Ω_i such that

Theorem (Jabłoński, Jung & JS 2012)

Under the above assumptions and definitions, we have

- $\mathcal{E}_{V_{\eta,\kappa}} \subseteq \mathcal{D}^{\infty}(\mathcal{S}_{\lambda})$,
- {||Sⁿ_λf||²}[∞]_{n=0} is a Stieltjes moment sequence for every f ∈ D[∞](S_λ), so S_λ generates Stieltjes moment sequences,
- S_λ is paranormal,
- S_{λ} is hyponormal if and only if $\sum_{i \in J_{\eta}} \frac{\lambda_{i,1}^2}{\|S_{\lambda}e_{i,1}\|^2} \leq 1$,
- $\sum_{i\in J_{\eta}} \frac{\lambda_{i,1}^2}{\|S_{\lambda}e_{i,1}\|^2} \leqslant \int_0^\infty \frac{1}{x} \operatorname{d} \rho(x),$
- the above inequality becomes equality if and only if for every i ∈ J_η, there exists q_i ∈ Ω_i such that

$$ho(\sigma\cap \Omega_i)=
ho(\Omega_i)\cdot \delta_{q_i}(\sigma), \quad \sigma\in\mathfrak{B}(\mathbb{R}_+), \ i\in J_\eta.$$

For every $\kappa \in \{0, 1, 2, ...\} \cup \{\infty\}$ there exists an injective weighted shift S_{λ} on $\mathscr{T}_{\infty,\kappa}$ such that:

- S_λ generates Stieltjes moment sequences,
- S_{λ} is not hyponormal, hence it is not subnormal,
- S_{λ} is a paranormal operator,
- $\mathcal{D}^{\infty}(S_{\lambda})$ is a core for S_{λ}^{n} for every $n \ge 0$.
- The proof of the above theorem depends heavily on some subtle properties of N-extremal measures. Recall that each indeterminate Stieltjes moment sequence possesses a continuum of N-extremal measures.

For every $\kappa \in \{0, 1, 2, ...\} \cup \{\infty\}$ there exists an injective weighted shift S_{λ} on $\mathscr{T}_{\infty,\kappa}$ such that:

- S_λ generates Stieltjes moment sequences,
- S_{λ} is not hyponormal, hence it is not subnormal,
- S_{λ} is a paranormal operator,
- $\mathcal{D}^{\infty}(S_{\lambda})$ is a core for S_{λ}^{n} for every $n \ge 0$.
- The proof of the above theorem depends heavily on some subtle properties of N-extremal measures. Recall that each indeterminate Stieltjes moment sequence possesses a continuum of N-extremal measures.

For every $\kappa \in \{0, 1, 2, ...\} \cup \{\infty\}$ there exists an injective weighted shift S_{λ} on $\mathscr{T}_{\infty,\kappa}$ such that:

- S_λ generates Stieltjes moment sequences,
- S_{λ} is not hyponormal, hence it is not subnormal,
- S_{λ} is a paranormal operator,
- $\mathcal{D}^{\infty}(S_{\lambda})$ is a core for S_{λ}^{n} for every $n \ge 0$.

The proof of the above theorem depends heavily on some subtle properties of N-extremal measures. Recall that each indeterminate Stieltjes moment sequence possesses a continuum of N-extremal measures.

For every $\kappa \in \{0, 1, 2, ...\} \cup \{\infty\}$ there exists an injective weighted shift S_{λ} on $\mathscr{T}_{\infty,\kappa}$ such that:

- S_λ generates Stieltjes moment sequences,
- S_{λ} is not hyponormal, hence it is not subnormal,
- S_{λ} is a paranormal operator,
- $\mathcal{D}^{\infty}(S_{\lambda})$ is a core for S_{λ}^{n} for every $n \ge 0$.

The proof of the above theorem depends heavily on some subtle properties of N-extremal measures. Recall that each indeterminate Stieltjes moment sequence possesses a continuum of N-extremal measures.

For every $\kappa \in \{0, 1, 2, ...\} \cup \{\infty\}$ there exists an injective weighted shift S_{λ} on $\mathscr{T}_{\infty,\kappa}$ such that:

- S_λ generates Stieltjes moment sequences,
- S_{λ} is not hyponormal, hence it is not subnormal,
- S_{λ} is a paranormal operator,
- $\mathfrak{D}^{\infty}(S_{\lambda})$ is a core for S_{λ}^{n} for every $n \ge 0$.

The proof of the above theorem depends heavily on some subtle properties of N-extremal measures. Recall that each indeterminate Stieltjes moment sequence possesses a continuum of N-extremal measures.

For every $\kappa \in \{0, 1, 2, ...\} \cup \{\infty\}$ there exists an injective weighted shift S_{λ} on $\mathscr{T}_{\infty,\kappa}$ such that:

- S_λ generates Stieltjes moment sequences,
- S_{λ} is not hyponormal, hence it is not subnormal,
- S_{λ} is a paranormal operator,
- $\mathfrak{D}^{\infty}(S_{\lambda})$ is a core for S_{λ}^{n} for every $n \ge 0$.
- The proof of the above theorem depends heavily on some subtle properties of N-extremal measures. Recall that each indeterminate Stieltjes moment sequence possesses a continuum of N-extremal measures.

ヘロン ヘアン ヘビン ヘビン

Composition operators in L²-spaces

- (X, A, μ) is a σ -finite measure space.
- $\phi: X \to X$ is an \mathcal{A} -measurable transformation, i.e., $\phi^{-1}(\Delta) \in \mathcal{A}$ for every $\Delta \in \mathcal{A}$.
- If φ is nonsingular, i.e., the measure μ ∘ φ⁻¹ given by μ ∘ φ⁻¹(Δ) = μ(φ⁻¹(Δ)) for Δ ∈ A is absolutely continuous with respect to μ, then the operator C_φ in L²(μ) given by

$$\mathcal{D}(C_{\phi}) = \{ f \in L^{2}(\mu) : f \circ \phi \in L^{2}(\mu) \},\ C_{\phi}f = f \circ \phi, \quad f \in \mathcal{D}(C_{\phi}),\$$

・ロト ・聞 ト ・ヨト ・ヨト

is well-defined.

• We call it a **composition** operator with a **symbol** ϕ .
Composition operators in L²-spaces

- (X, A, μ) is a σ -finite measure space.
- $\phi: X \to X$ is an \mathcal{A} -measurable transformation, i.e., $\phi^{-1}(\Delta) \in \mathcal{A}$ for every $\Delta \in \mathcal{A}$.
- If φ is nonsingular, i.e., the measure μ ∘ φ⁻¹ given by μ ∘ φ⁻¹(Δ) = μ(φ⁻¹(Δ)) for Δ ∈ A is absolutely continuous with respect to μ, then the operator C_φ in L²(μ) given by

$$\mathcal{D}(C_{\phi}) = \{ f \in L^{2}(\mu) : f \circ \phi \in L^{2}(\mu) \},\$$
$$C_{\phi}f = f \circ \phi, \quad f \in \mathcal{D}(C_{\phi}),$$

ヘロン ヘアン ヘビン ヘビン

is well-defined.

• We call it a **composition** operator with a **symbol** ϕ .

Composition operators in L²-spaces

- (X, A, μ) is a σ -finite measure space.
- $\phi: X \to X$ is an \mathcal{A} -measurable transformation, i.e., $\phi^{-1}(\Delta) \in \mathcal{A}$ for every $\Delta \in \mathcal{A}$.
- If φ is nonsingular, i.e., the measure μ ∘ φ⁻¹ given by μ ∘ φ⁻¹(Δ) = μ(φ⁻¹(Δ)) for Δ ∈ A is absolutely continuous with respect to μ, then the operator C_φ in L²(μ) given by

$$\mathcal{D}(\mathcal{C}_{\phi}) = \{ f \in L^2(\mu) \colon f \circ \phi \in L^2(\mu) \}, \ \mathcal{C}_{\phi}f = f \circ \phi, \quad f \in \mathcal{D}(\mathcal{C}_{\phi}),$$

ヘロン 人間 とくほとく ほとう

is well-defined.

• We call it a **composition** operator with a **symbol** ϕ .

Composition operators in L²-spaces

- (X, A, μ) is a σ -finite measure space.
- $\phi: X \to X$ is an \mathcal{A} -measurable transformation, i.e., $\phi^{-1}(\Delta) \in \mathcal{A}$ for every $\Delta \in \mathcal{A}$.
- If φ is nonsingular, i.e., the measure μ ∘ φ⁻¹ given by μ ∘ φ⁻¹(Δ) = μ(φ⁻¹(Δ)) for Δ ∈ A is absolutely continuous with respect to μ, then the operator C_φ in L²(μ) given by

$$\mathcal{D}(\mathcal{C}_{\phi}) = \{ f \in L^2(\mu) \colon f \circ \phi \in L^2(\mu) \}, \ \mathcal{C}_{\phi}f = f \circ \phi, \quad f \in \mathcal{D}(\mathcal{C}_{\phi}),$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

is well-defined.

• We call it a **composition** operator with a **symbol** ϕ .

Let C_{ϕ} be a bounded composition operator on $L^{2}(\mu)$. Then the following two conditions are equivalent:

- C_{ϕ} is subnormal,
- for μ-a.e. x ∈ X, {h_n(x)}_{n=0}[∞] is a Stieltjes moment sequence,

where $h_n: X \to [0, \infty]$ is the Radon-Nikodym derivative of the measure $\mu \circ (\phi^n)^{-1}$ with respect to μ .

(ϕ^0 is the identity mapping on *X*, $\phi^{n+1} = \phi \circ \phi^n$ for $n \ge 0$.)

There are two more conditions characterizing the subnormality of bounded composition operators C_φ; however all of them are equivalent in the unbounded case.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Let C_{ϕ} be a bounded composition operator on $L^{2}(\mu)$. Then the following two conditions are equivalent:

- C_{ϕ} is subnormal,
- for μ-a.e. x ∈ X, {h_n(x)}_{n=0}[∞] is a Stieltjes moment sequence,

where $h_n: X \to [0, \infty]$ is the Radon-Nikodym derivative of the measure $\mu \circ (\phi^n)^{-1}$ with respect to μ .

(ϕ^0 is the identity mapping on X, $\phi^{n+1} = \phi \circ \phi^n$ for $n \ge 0$.)

There are two more conditions characterizing the subnormality of bounded composition operators C_φ; however all of them are equivalent in the unbounded case.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Let C_{ϕ} be a bounded composition operator on $L^{2}(\mu)$. Then the following two conditions are equivalent:

- C_{ϕ} is subnormal,
- for μ-a.e. x ∈ X, {h_n(x)}_{n=0}[∞] is a Stieltjes moment sequence,

where $h_n: X \to [0, \infty]$ is the Radon-Nikodym derivative of the measure $\mu \circ (\phi^n)^{-1}$ with respect to μ .

(ϕ^0 is the identity mapping on *X*, $\phi^{n+1} = \phi \circ \phi^n$ for $n \ge 0$.)

There are two more conditions characterizing the subnormality of bounded composition operators C_φ; however all of them are equivalent in the unbounded case.

イロン 不良 とくほう 不良 とうほ

Let C_{ϕ} be a bounded composition operator on $L^{2}(\mu)$. Then the following two conditions are equivalent:

- C_{ϕ} is subnormal,
- for μ-a.e. x ∈ X, {h_n(x)}_{n=0}[∞] is a Stieltjes moment sequence,

where $h_n: X \to [0, \infty]$ is the Radon-Nikodym derivative of the measure $\mu \circ (\phi^n)^{-1}$ with respect to μ .

(ϕ^0 is the identity mapping on *X*, $\phi^{n+1} = \phi \circ \phi^n$ for $n \ge 0$.)

There are two more conditions characterizing the subnormality of bounded composition operators C_φ; however all of them are equivalent in the unbounded case.

イロン 不良 とくほう 不良 とうほ

- Does Lambert's theorem remain true for unbounded composition operators in *L*²-spaces?
- The answer is in the negative.
- Formally normal (in particular, symmetric) composition operators in *L*²spaces are always normal.
- This means that there is no chance to adapt the methods used in general operator theory to the context of composition operators in L²-spaces.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Does Lambert's theorem remain true for unbounded composition operators in *L*²-spaces?
- The answer is in the negative.
- Formally normal (in particular, symmetric) composition operators in *L*²spaces are always normal.
- This means that there is no chance to adapt the methods used in general operator theory to the context of composition operators in L²-spaces.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Does Lambert's theorem remain true for unbounded composition operators in *L*²-spaces?
- The answer is in the negative.
- Formally normal (in particular, symmetric) composition operators in L²spaces are always normal.
- This means that there is no chance to adapt the methods used in general operator theory to the context of composition operators in L²-spaces.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- Does Lambert's theorem remain true for unbounded composition operators in *L*²-spaces?
- The answer is in the negative.
- Formally normal (in particular, symmetric) composition operators in L²spaces are always normal.
- This means that there is no chance to adapt the methods used in general operator theory to the context of composition operators in L²-spaces.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let S_{λ} be a weighted shift on a rootless directed tree $\mathscr{T} = (V, E)$ with positive weights $\lambda = {\lambda_v}_{v \in V^\circ}$. Suppose V is countably infinite.

- Then the operator S_λ is unitarily equivalent to a composition operator C in an L²-space over a σ-finite measure space.
- Moreover, if the directed tree \mathcal{T} is leafless, then C can be made injective.

・ロト ・ 同ト ・ ヨト ・ ヨト

Let S_{λ} be a weighted shift on a rootless directed tree $\mathscr{T} = (V, E)$ with positive weights $\lambda = {\lambda_v}_{v \in V^\circ}$. Suppose V is countably infinite.

- Then the operator S_λ is unitarily equivalent to a composition operator C in an L²-space over a σ-finite measure space.
- Moreover, if the directed tree \mathcal{T} is leafless, then C can be made injective.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Let S_{λ} be a weighted shift on a rootless directed tree $\mathscr{T} = (V, E)$ with positive weights $\lambda = {\lambda_v}_{v \in V^\circ}$. Suppose V is countably infinite.

- Then the operator S_λ is unitarily equivalent to a composition operator C in an L²-space over a σ-finite measure space.
- Moreover, if the directed tree 𝒴 is leafless, then C can be made injective.

くロト (過) (目) (日)

There exists an injective composition operator C in an L²-space over a σ -finite measure space such that:

- for μ-a.e. x ∈ X, {h_n(x)}[∞]_{n=0} is a Stieltjes moment sequence,
- C is not hyponormal, thus it is not subnormal,
- C is paranormal,
- $\mathcal{D}^{\infty}(C)$ is a core for C^n for every $n \ge 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

There exists an injective composition operator C in an L²-space over a σ -finite measure space such that:

- for μ-a.e. x ∈ X, {h_n(x)}[∞]_{n=0} is a Stieltjes moment sequence,
- C is not hyponormal, thus it is not subnormal,
- C is paranormal,
- $\mathcal{D}^{\infty}(C)$ is a core for C^n for every $n \ge 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

There exists an injective composition operator C in an L²-space over a σ -finite measure space such that:

- for μ-a.e. x ∈ X, {h_n(x)}[∞]_{n=0} is a Stieltjes moment sequence,
- C is not hyponormal, thus it is not subnormal,
- C is paranormal,
- $\mathcal{D}^{\infty}(C)$ is a core for C^n for every $n \ge 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

There exists an injective composition operator C in an L²-space over a σ -finite measure space such that:

- for μ-a.e. x ∈ X, {h_n(x)}[∞]_{n=0} is a Stieltjes moment sequence,
- C is not hyponormal, thus it is not subnormal,
- C is paranormal,
- $\mathcal{D}^{\infty}(C)$ is a core for C^n for every $n \ge 0$.

・ 回 ト ・ ヨ ト ・ ヨ ト

There exists an injective composition operator C in an L²-space over a σ -finite measure space such that:

- for μ-a.e. x ∈ X, {h_n(x)}[∞]_{n=0} is a Stieltjes moment sequence,
- C is not hyponormal, thus it is not subnormal,
- C is paranormal,
- $\mathfrak{D}^{\infty}(C)$ is a core for C^n for every $n \ge 0$.

・ 回 ト ・ ヨ ト ・ ヨ ト

A problem

• Find a criterion for subnormality of unbounded composition operators in *L*² spaces.

- It should cover the case of bounded composition operators.
- No restrictions on domains of powers of operators in question.
- The main difficulty: the known criteria for subnormality of general Hilbert space operators (Bishop, Foiaş, Szafraniec) do not help us to solve the problem.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Find a criterion for subnormality of unbounded composition operators in *L*² spaces.
- It should cover the case of bounded composition operators.
- No restrictions on domains of powers of operators in question.
- The main difficulty: the known criteria for subnormality of general Hilbert space operators (Bishop, Foiaş, Szafraniec) do not help us to solve the problem.

くロト (過) (目) (日)

- Find a criterion for subnormality of unbounded composition operators in *L*² spaces.
- It should cover the case of bounded composition operators.
- No restrictions on domains of powers of operators in question.
- The main difficulty: the known criteria for subnormality of general Hilbert space operators (Bishop, Foiaş, Szafraniec) do not help us to solve the problem.

ヘロト 人間 ト ヘヨト ヘヨト

- Find a criterion for subnormality of unbounded composition operators in *L*² spaces.
- It should cover the case of bounded composition operators.
- No restrictions on domains of powers of operators in question.
- The main difficulty: the known criteria for subnormality of general Hilbert space operators (Bishop, Foiaş, Szafraniec) do not help us to solve the problem.

・ 同 ト ・ ヨ ト ・ ヨ ト

The conditional expectation

- We assume that the transformation ϕ is nonsingular and C_{ϕ} is densely defined.
- If *f*: X → ℝ₊ is an A-measure function, then there exists a unique (up to sets of μ-measure zero) φ⁻¹(A)-measurable function E(*f*): X → ℝ₊ such that

$$\int_{\phi^{-1}(\Delta)} f \, \mathrm{d}\, \mu = \int_{\phi^{-1}(\Delta)} \mathsf{E}(f) \, \mathrm{d}\, \mu, \quad \Delta \in \mathcal{A}.$$

<ロ> (四) (四) (三) (三) (三)

 E(f) is called the conditional expectation of f with respect to the σ-algebra φ⁻¹(A).

The conditional expectation

- We assume that the transformation *φ* is nonsingular and *C_φ* is densely defined.
- If f: X → ℝ₊ is an A-measure function, then there exists a unique (up to sets of μ-measure zero) φ⁻¹(A)-measurable function E(f): X → ℝ₊ such that

$$\int_{\phi^{-1}(\varDelta)} f \, \mathrm{d}\, \mu = \int_{\phi^{-1}(\varDelta)} \mathsf{E}(f) \, \mathrm{d}\, \mu, \quad \varDelta \in \mathcal{A}.$$

<ロ> (四) (四) (三) (三) (三)

 E(f) is called the conditional expectation of f with respect to the σ-algebra φ⁻¹(A).

The conditional expectation

- We assume that the transformation *φ* is nonsingular and *C_φ* is densely defined.
- If f: X → ℝ₊ is an A-measure function, then there exists a unique (up to sets of μ-measure zero) φ⁻¹(A)-measurable function E(f): X → ℝ₊ such that

$$\int_{\phi^{-1}(\varDelta)} f \, \mathrm{d}\, \mu = \int_{\phi^{-1}(\varDelta)} \mathsf{E}(f) \, \mathrm{d}\, \mu, \quad \varDelta \in \mathcal{A}.$$

(個) (日) (日) (日)

 E(f) is called the conditional expectation of f with respect to the σ-algebra φ⁻¹(A).

The consistency condition

- P: X × 𝔅(ℝ₊) → [0, 1] is said to be an A-measurable family of probability measures if the set-function P(x, ·) is a probability measure for every x ∈ X and the function P(·, σ) is A-measurable for every σ ∈ 𝔅(ℝ₊).
- We say that an A-measurable family of probability measures P: X × 𝔅(ℝ₊) → [0, 1] satisfies the consistency condition if

$$\mathsf{E}(P(\cdot,\sigma))(x) = \frac{\int_{\sigma} t \, P(\phi(x), \mathsf{d}\, t)}{\mathsf{h}_{\phi}(\phi(x))} \text{ for } \mu\text{-a.e. } x \in X, \quad \sigma \in \mathfrak{B}(\mathbb{R}_+),$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

where
$$h_{\phi} = \frac{d \mu \circ \phi^{-1}}{d \mu}$$
.

The consistency condition

- P: X × 𝔅(ℝ₊) → [0, 1] is said to be an A-measurable family of probability measures if the set-function P(x, ·) is a probability measure for every x ∈ X and the function P(·, σ) is A-measurable for every σ ∈ 𝔅(ℝ₊).
- We say that an A-measurable family of probability measures P: X × 𝔅(ℝ₊) → [0, 1] satisfies the consistency condition if

$$\mathsf{E}(\mathsf{P}(\cdot,\sigma))(x) = \frac{\int_{\sigma} t \, \mathsf{P}(\phi(x), \operatorname{d} t)}{\mathsf{h}_{\phi}(\phi(x))} \text{ for } \mu\text{-a.e. } x \in X, \quad \sigma \in \mathfrak{B}(\mathbb{R}_+),$$

イロト イポト イヨト イヨト 三日

where
$$h_{\phi} = \frac{d \mu \circ \phi^{-1}}{d \mu}$$
.

A criterion for subnormality

If C_φ is subnormal, then C_φ is densely defined and injective.

Theorem (Budzyński, Jabłoński, Jung & JS 2013)

Let (X, A, μ) be a σ -finite measure space and ϕ be a nonsingular transformation of X such that C_{ϕ} is densely defined and injective. Suppose there exists an A-measurable family $P: X \times \mathfrak{B}(\mathbb{R}_+) \rightarrow [0, 1]$ of probability measures that satisfies the consistency condition. Then C_{ϕ} is subnormal.

・ロト ・ 理 ト ・ ヨ ト ・

A criterion for subnormality

If C_φ is subnormal, then C_φ is densely defined and injective.

Theorem (Budzyński, Jabłoński, Jung & JS 2013)

Let (X, \mathcal{A}, μ) be a σ -finite measure space and ϕ be a nonsingular transformation of X such that C_{ϕ} is densely defined and injective. Suppose there exists an \mathcal{A} -measurable family $P: X \times \mathfrak{B}(\mathbb{R}_+) \rightarrow [0, 1]$ of probability measures that satisfies the consistency condition. Then C_{ϕ} is subnormal.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Generating moment sequences

• Find the relationship between the consistency condition and moments.

Theorem (Budzyński, Jabłoński, Jung & JS 2013)

 (X, \mathcal{A}, μ) is a σ -finite measure space, ϕ is a nonsingular transformation of X such that C_{ϕ} is densely defined and injective, and $P: X \times \mathfrak{B}(\mathbb{R}_+) \rightarrow [0, 1]$ is an \mathcal{A} -measurable family of probability measures that satisfies the consistency condition. Then

$$h_{\phi^n}(x) = \int_0^\infty t^n P(x, dt)$$
 for μ -a.e. $x \in X$, $n = 0, 1, 2, ...$

イロト イポト イヨト イヨト

Recall that
$$h_{\phi^n} = \frac{d \mu \circ (\phi^n)^{-1}}{d \mu}$$
.

• Find the relationship between the consistency condition and moments.

Theorem (Budzyński, Jabłoński, Jung & JS 2013)

 (X, \mathcal{A}, μ) is a σ -finite measure space, ϕ is a nonsingular transformation of X such that C_{ϕ} is densely defined and injective, and $P \colon X \times \mathfrak{B}(\mathbb{R}_+) \to [0, 1]$ is an \mathcal{A} -measurable family of probability measures that satisfies the consistency condition. Then

$$h_{\phi^n}(x) = \int_0^\infty t^n P(x, dt) \text{ for } \mu \text{-a.e. } x \in X, \quad n = 0, 1, 2, \dots.$$

ヘロン 人間 とくほ とくほ とう

Recall that
$$h_{\phi^n} = \frac{d \mu \circ (\phi^n)^{-1}}{d \mu}$$
.

• Let X be a nonempty set and $\phi: X \to X$ be a mapping. Set

$$E_{\phi} = \{ (x, y) \in X \times X \colon x = \phi(y) \}.$$

Then (X, E_{ϕ}) is a directed graph.

- Note that for every y ∈ X, φ(y) is the parent of y. Hence, φ⁻¹({x}) can be thought of as the set of all children of x.
- Connected directed graphs (X, E_φ) whose vertices, all but one, have valency one can be described explicitly.

ヘロン 人間 とくほ とくほとう

• Let X be a nonempty set and $\phi: X \to X$ be a mapping. Set

$$E_{\phi} = \{ (x, y) \in X \times X \colon x = \phi(y) \}.$$

Then (X, E_{ϕ}) is a directed graph.

- Note that for every y ∈ X, φ(y) is the parent of y. Hence, φ⁻¹({x}) can be thought of as the set of all children of x.
- Connected directed graphs (X, E_φ) whose vertices, all but one, have valency one can be described explicitly.

<ロ> (四) (四) (三) (三) (三)

• Let X be a nonempty set and $\phi: X \to X$ be a mapping. Set

$$E_{\phi} = \{ (x, y) \in X \times X \colon x = \phi(y) \}.$$

Then (X, E_{ϕ}) is a directed graph.

- Note that for every y ∈ X, φ(y) is the parent of y. Hence, φ⁻¹({x}) can be thought of as the set of all children of x.
- Connected directed graphs (X, E_φ) whose vertices, all but one, have valency one can be described explicitly.

イロン 不良 とくほう 不良 とうほ

Theorem (Budzyński, Jabłoński, Jung & JS 2014)

Let (X, E_{ϕ}) be as above and let $\eta \in \{1, 2, 3, ...\} \cup \{\infty\}$. Then the following two conditions are equivalent:

(i) the directed graph (X, E_φ) is connected and there exists ω ∈ X such that card(φ⁻¹({ω})) = η + 1 and card(φ⁻¹({x})) = 1 for every x ∈ X \ {ω},

(ii) (X, E_{ϕ}) takes one of the following two forms:

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ
Let (X, E_{ϕ}) be as above and let $\eta \in \{1, 2, 3, ...\} \cup \{\infty\}$. Then the following two conditions are equivalent:

(i) the directed graph (X, E_φ) is connected and there exists ω ∈ X such that card(φ⁻¹({ω})) = η + 1 and card(φ⁻¹({x})) = 1 for every x ∈ X \ {ω},

(ii) (X, E_{ϕ}) takes one of the following two forms:

イロト 不得 とくほ とくほ とうほ

Let (X, E_{ϕ}) be as above and let $\eta \in \{1, 2, 3, ...\} \cup \{\infty\}$. Then the following two conditions are equivalent:

(i) the directed graph (X, E_φ) is connected and there exists ω ∈ X such that card(φ⁻¹({ω})) = η + 1 and card(φ⁻¹({x})) = 1 for every x ∈ X \ {ω},

(ii) (X, E_{ϕ}) takes one of the following two forms:

ヘロト 人間 とくほ とくほ とう

(X, E_{ϕ}) with one branching vertex

(ii-a) there exist $\kappa \in \{0, 1, 2, ...\}$ and two disjoint systems $\{x_i\}_{i=0}^{\kappa}$ and $\{x_{i,j}\}_{i=1}^{\eta} \sum_{j=1}^{\infty}$ of distinct points of X such that

$$X = \{x_0, \dots, x_{\kappa}\} \cup \{x_{i,j} \colon i \in J_{\eta}, j \ge 1\},$$

$$\phi(x) = \begin{cases} x_{i,j-1} & \text{if } x = x_{i,j} \text{ with } i \in J_{\eta} \text{ and } j \ge 2, \\ x_{\kappa} & \text{if } x = x_{i,1} \text{ with } i \in J_{\eta} \text{ or } x = x_0, \\ x_{i-1} & \text{if } x = x_i \text{ with } i \in J_{\kappa}, \end{cases}$$

(ii-b) there exist two disjoint systems {x_i}[∞]_{i=0} and {x_{i,j}}^{η+1∞}_{i=1} of distinct points of X such that

$$X = \{x_i : i \ge 0\} \cup \{x_{i,j} : i \in J_{\eta+1}, j \ge 1\},\$$

$$\phi(x) = \begin{cases} x_{i,j-1} & \text{if } x = x_{i,j} \text{ with } i \in J_{\eta+1} \text{ and } j \ge 2\\ x_0 & \text{if } x = x_{i,1} \text{ with } i \in J_{\eta+1},\ x_{i+1} & \text{if } x = x_i \text{ with } i \ge 0. \end{cases}$$

(X, E_{ϕ}) with one branching vertex

(ii-a) there exist $\kappa \in \{0, 1, 2, ...\}$ and two disjoint systems $\{x_i\}_{i=0}^{\kappa}$ and $\{x_{i,j}\}_{i=1}^{\eta} \sum_{j=1}^{\infty}$ of distinct points of X such that

$$X = \{x_0, \dots, x_{\kappa}\} \cup \{x_{i,j} \colon i \in J_{\eta}, j \ge 1\},$$

$$\phi(x) = \begin{cases} x_{i,j-1} & \text{if } x = x_{i,j} \text{ with } i \in J_{\eta} \text{ and } j \ge 2, \\ x_{\kappa} & \text{if } x = x_{i,1} \text{ with } i \in J_{\eta} \text{ or } x = x_0, \\ x_{i-1} & \text{if } x = x_i \text{ with } i \in J_{\kappa}, \end{cases}$$

(ii-b) there exist two disjoint systems {x_i}[∞]_{i=0} and {x_{i,j}}^{η+1∞}_{i=1} of distinct points of X such that

$$X = \{x_i : i \ge 0\} \cup \{x_{i,j} : i \in J_{\eta+1}, j \ge 1\},\$$

$$\phi(x) = \begin{cases} x_{i,j-1} & \text{if } x = x_{i,j} \text{ with } i \in J_{\eta+1} \text{ and } j \ge 2,\$$

$$x_0 & \text{if } x = x_{i,1} \text{ with } i \in J_{\eta+1},\$$

$$x_{i+1} & \text{if } x = x_i \text{ with } i \ge 0.\end{cases}$$

The case (ii-a)

• If $\eta \in \{1, 2, 3, ...\} \cup \{\infty\}$ and $\kappa \in \{0, 1, 2, ...\}$, then X and ϕ appearing in (ii-a) are denoted by $X_{\eta,\kappa}$ and $\phi_{\eta,\kappa}$, respectively.

・ロ・・ (日・・ 日・・ 日)

The directed graph (X, E_φ) described in (ii-a) is not a directed tree because it has a circuit.

The case (ii-a)

• If $\eta \in \{1, 2, 3, ...\} \cup \{\infty\}$ and $\kappa \in \{0, 1, 2, ...\}$, then X and ϕ appearing in (ii-a) are denoted by $X_{\eta,\kappa}$ and $\phi_{\eta,\kappa}$, respectively.

▲圖▶ ▲ 国▶ ▲ 国≯

 The directed graph (X, E_φ) described in (ii-a) is not a directed tree because it has a circuit.

The case (ii-a)

- If $\eta \in \{1, 2, 3, ...\} \cup \{\infty\}$ and $\kappa \in \{0, 1, 2, ...\}$, then X and ϕ appearing in (ii-a) are denoted by $X_{\eta,\kappa}$ and $\phi_{\eta,\kappa}$, respectively.
- The directed graph (X, E_φ) described in (ii-a) is not a directed tree because it has a circuit.

- The class of composition operators C_φ in L²(X, μ) with symbol φ as in (ii-b), where μ is a discrete measure¹ on X, coincides with the class of weighted shifts on the directed tree S_{η+1,∞} with positive weights.
- Since the latter class was discussed earlier, we can concentrate on composition operators C_φ in L²(X, μ) with symbol φ as in (ii-a), where μ is a discrete measures on X.

Jan Stochel Uniwersytet Jagielloński Kraków

Subnormality via directed trees

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- The class of composition operators C_φ in L²(X, μ) with symbol φ as in (ii-b), where μ is a discrete measure¹ on X, coincides with the class of weighted shifts on the directed tree S_{η+1,∞} with positive weights.
- Since the latter class was discussed earlier, we can concentrate on composition operators C_φ in L²(X, μ) with symbol φ as in (ii-a), where μ is a discrete measures on X.

¹ i.e., $\mu(\{x\}) > 0$ for every $x \in X$.

Jan Stochel Uniwersytet Jagielloński Kraków

< ≣ >

Let $X = X_{2,0}$ and $\phi = \phi_{2,0}$. Then there exists a (σ -finite) discrete measure μ on ($X, 2^X$) such that

- (i) C_{ϕ} generates Stieltjes moment sequences,
- (ii) C_{ϕ} is not hyponormal, thus it is not subnormal,
- (iii) C_{ϕ} is paranormal,
- (iv) $\mathcal{D}^{\infty}(C_{\phi})$ is a core for C_{ϕ}^{n} for every $n \ge 0$.
 - The proof of the above theorem depends heavily on the theory of classical moment problems especially on deep results due to Berg-Valent [1994] and Berg-Durán [1995].

・ロト ・四ト ・ヨト ・ヨト

Let $X = X_{2,0}$ and $\phi = \phi_{2,0}$. Then there exists a (σ -finite) discrete measure μ on ($X, 2^X$) such that

- (i) C_{ϕ} generates Stieltjes moment sequences,
- (ii) C_{ϕ} is not hyponormal, thus it is not subnormal,
- (iii) C_{ϕ} is paranormal,
- (iv) $\mathbb{D}^{\infty}(C_{\phi})$ is a core for C_{ϕ}^{n} for every $n \geqslant 0$.
 - The proof of the above theorem depends heavily on the theory of classical moment problems especially on deep results due to Berg-Valent [1994] and Berg-Durán [1995].

ヘロア ヘビア ヘビア・

Let $X = X_{2,0}$ and $\phi = \phi_{2,0}$. Then there exists a (σ -finite) discrete measure μ on ($X, 2^X$) such that

- (i) C_{ϕ} generates Stieltjes moment sequences,
- (ii) C_{ϕ} is not hyponormal, thus it is not subnormal,
- (iii) C_{ϕ} is paranormal,
- (iv) $\mathcal{D}^{\infty}(C_{\phi})$ is a core for C_{ϕ}^{n} for every $n \ge 0$.
 - The proof of the above theorem depends heavily on the theory of classical moment problems especially on deep results due to Berg-Valent [1994] and Berg-Durán [1995].

・ロト ・ 理 ト ・ ヨ ト ・

Let $X = X_{2,0}$ and $\phi = \phi_{2,0}$. Then there exists a (σ -finite) discrete measure μ on ($X, 2^X$) such that

- (i) C_{ϕ} generates Stieltjes moment sequences,
- (ii) C_{ϕ} is not hyponormal, thus it is not subnormal,
- (iii) C_{ϕ} is paranormal,

(iv) $\mathfrak{D}^{\infty}(C_{\phi})$ is a core for C_{ϕ}^{n} for every $n \ge 0$.

The proof of the above theorem depends heavily on the theory of classical moment problems especially on deep results due to Berg-Valent [1994] and Berg-Durán [1995].

・ロト ・ 理 ト ・ ヨ ト ・

Let $X = X_{2,0}$ and $\phi = \phi_{2,0}$. Then there exists a (σ -finite) discrete measure μ on ($X, 2^X$) such that

- (i) C_{ϕ} generates Stieltjes moment sequences,
- (ii) C_{ϕ} is not hyponormal, thus it is not subnormal,
- (iii) C_{ϕ} is paranormal,
- (iv) $\mathfrak{D}^{\infty}(C_{\phi})$ is a core for C_{ϕ}^{n} for every $n \ge 0$.
 - The proof of the above theorem depends heavily on the theory of classical moment problems especially on deep results due to Berg-Valent [1994] and Berg-Durán [1995].

・ロン ・聞 と ・ ヨ と ・ ヨ と …

Let $X = X_{2,0}$ and $\phi = \phi_{2,0}$. Then there exists a (σ -finite) discrete measure μ on ($X, 2^X$) such that

- (i) C_{ϕ} generates Stieltjes moment sequences,
- (ii) C_{ϕ} is not hyponormal, thus it is not subnormal,
- (iii) C_{ϕ} is paranormal,

(iv) $\mathfrak{D}^{\infty}(C_{\phi})$ is a core for C_{ϕ}^{n} for every $n \ge 0$.

The proof of the above theorem depends heavily on the theory of classical moment problems especially on deep results due to Berg-Valent [1994] and Berg-Durán [1995].

・ロン ・聞 と ・ ヨ と ・ ヨ と …

 In 1940 Naimark gave a remarkable example of a closed symmetric operator S whose square has trivial domain, i.e.

$$\mathcal{D}(S^2) = \{0\}.$$

- In 1983 Chernoff published a short example of a semibounded closed symmetric operator *S* whose square has trivial domain.
- Schmüdgen in 1983 found out another pathological behaviour of domains of powers of closed symmetric operators (the density or lack of density of D(Sⁿ⁺¹) in D(Sⁿ) with respect to the graph norm of Sⁿ).

ヘロア ヘビア ヘビア・

 In 1940 Naimark gave a remarkable example of a closed symmetric operator S whose square has trivial domain, i.e.

$$\mathcal{D}(S^2) = \{0\}.$$

- In 1983 Chernoff published a short example of a semibounded closed symmetric operator S whose square has trivial domain.
- Schmüdgen in 1983 found out another pathological behaviour of domains of powers of closed symmetric operators (the density or lack of density of D(Sⁿ⁺¹) in D(Sⁿ) with respect to the graph norm of Sⁿ).

 In 1940 Naimark gave a remarkable example of a closed symmetric operator S whose square has trivial domain, i.e.

$$\mathcal{D}(S^2) = \{0\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- In 1983 Chernoff published a short example of a semibounded closed symmetric operator S whose square has trivial domain.
- Schmüdgen in 1983 found out another pathological behaviour of domains of powers of closed symmetric operators (the density or lack of density of D(Sⁿ⁺¹) in D(Sⁿ) with respect to the graph norm of Sⁿ).

Weighted shifts and composition operators

- As recently shown, symmetric weighted shifts on directed trees are automatically bounded. The same is true for composition operators in L²-spaces.
- Quasinormal operators which form a subclass of subnormal operators have the property that all their powers are densely defined.
- Formally normal weighted shifts on directed trees and formally normal composition operators in *L*² spaces are normal operators, and thus all their powers are densely defined.

ヘロン ヘアン ヘビン ヘビン

Weighted shifts and composition operators

- As recently shown, symmetric weighted shifts on directed trees are automatically bounded. The same is true for composition operators in L²-spaces.
- Quasinormal operators which form a subclass of subnormal operators have the property that all their powers are densely defined.
- Formally normal weighted shifts on directed trees and formally normal composition operators in *L*² spaces are normal operators, and thus all their powers are densely defined.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Weighted shifts and composition operators

- As recently shown, symmetric weighted shifts on directed trees are automatically bounded. The same is true for composition operators in L²-spaces.
- Quasinormal operators which form a subclass of subnormal operators have the property that all their powers are densely defined.
- Formally normal weighted shifts on directed trees and formally normal composition operators in *L*² spaces are normal operators, and thus all their powers are densely defined.

・ 回 ト ・ ヨ ト ・ ヨ ト … ヨ

- Is it true that for every integer n ≥ 1, there exists an injective subnormal weighted shift on a directed tree whose *n*th power is densely defined and the domain of its (n + 1)th power is trivial.
- A similar question can be asked for composition operators in *L*²-spaces.

・ロト ・ 理 ト ・ ヨ ト ・

э

- Is it true that for every integer n ≥ 1, there exists an injective subnormal weighted shift on a directed tree whose *n*th power is densely defined and the domain of its (n + 1)th power is trivial.
- A similar question can be asked for composition operators in L²-spaces.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Jabłoński, Jung & JS 2014)

Let $\mathscr{T} = (V, E)$ be a directed tree such that $V^{\circ} \neq \varnothing$. Then the following conditions are equivalent:

(i) there exists a family λ = {λ_ν}_{v∈V°} of nonzero complex numbers such that D(S_λ) = ℓ²(V) and D(S²_λ) = {0},

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへの

(ii) *I* is extremal.

Theorem (Jabłoński, Jung & JS 2014)

Let $\mathscr{T} = (V, E)$ be a directed tree such that $V^{\circ} \neq \varnothing$. Then the following conditions are equivalent:

(i) there exists a family λ = {λ_ν}_{ν∈V°} of nonzero complex numbers such that D(S_λ) = ℓ²(V) and D(S²_λ) = {0},

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

(ii) \mathcal{T} is extremal.

Theorem (Jabłoński, Jung & JS 2014)

Let $\mathscr{T} = (V, E)$ be a directed tree such that $V^{\circ} \neq \varnothing$. Then the following conditions are equivalent:

(i) there exists a family λ = {λ_ν}_{ν∈V°} of nonzero complex numbers such that D(S_λ) = ℓ²(V) and D(S²_λ) = {0},

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

(ii) \mathcal{T} is extremal.

Theorem (Jabłoński, Jung & JS 2014)

Let $\mathscr{T} = (V, E)$ be a directed tree such that $V^{\circ} \neq \varnothing$. Then the following conditions are equivalent:

(i) there exists a family λ = {λ_ν}_{ν∈V°} of nonzero complex numbers such that D(S_λ) = ℓ²(V) and D(S²_λ) = {0},

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

(ii) *T* is extremal.

• Using a criterion for subnormality of unbounded weighted shifts on directed trees due to BJJS, we can prove the following.

Theorem (Budzyński, Jabłoński, Jung & JS 2014)

Suppose $\mathscr{T} = (V, E)$ is an extremal directed tree and $n \in \{1, 2, 3, \ldots\}$. Then there exists a subnormal weighted shift S_{λ} on \mathscr{T} such that S_{λ}^{n} is densely defined and $\mathbb{D}(S_{\lambda}^{n+1}) = \{0\}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• Using a criterion for subnormality of unbounded weighted shifts on directed trees due to BJJS, we can prove the following.

Theorem (Budzyński, Jabłoński, Jung & JS 2014)

Suppose $\mathscr{T} = (V, E)$ is an extremal directed tree and $n \in \{1, 2, 3, \ldots\}$. Then there exists a subnormal weighted shift S_{λ} on \mathscr{T} such that S_{λ}^{n} is densely defined and $\mathbb{D}(S_{\lambda}^{n+1}) = \{0\}$.

イロト イポト イヨト イヨト 三日

 Since each weighted shift on a rootless directed tree with positive weights is unitarily equivalent to a composition operator in an L² space, we get the following.

Theorem (Budzyński, Jabłoński, Jung & JS 2014)

For every $n \in \{1, 2, 3, ...\}$, there exists a subnormal injective composition operator *C* in an L²-space over σ -finite measure space such that C^n is densely defined and $\mathcal{D}(C^{n+1}) = \{0\}$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

 Since each weighted shift on a rootless directed tree with positive weights is unitarily equivalent to a composition operator in an L² space, we get the following.

Theorem (Budzyński, Jabłoński, Jung & JS 2014)

For every $n \in \{1, 2, 3, ...\}$, there exists a subnormal injective composition operator *C* in an L^2 -space over σ -finite measure space such that C^n is densely defined and $\mathcal{D}(C^{n+1}) = \{0\}$.

・ロト ・ 理 ト ・ ヨ ト ・

Sources

Talk is based on the following papers:

1. Z. J. Jabłoński, I. B. Jung, J. Stochel, Weighted shifts on directed trees, *Mem. Amer. Math. Soc.* **216** (2012), no. 1017, viii+107pp.

2. Z. J. Jabłoński, I. B. Jung, J. Stochel, A non-hyponormal operator generating Stieltjes moment sequences, *Journal of Functional Analysis* **262** (2012), 3946-3980.

3. P. Budzyński, Z. J. Jabłoński, I. B. Jung, J. Stochel, Unbounded subnormal composition operators in L^2 -spaces (arXiv:1303.6486), submitted, 44 pp.

4. P. Budzyński, Z. J. Jabłoński, I. B. Jung, J. Stochel, Subnormality of composition operators in L² spaces over directed graphs with one circuit, work in progress, pp. 35+.
5. P. Budzyński, Z. J. Jabłoński, I. B. Jung, J. Stochel, Subnormal weighted shifts on directed trees whose *n*th powers have trivial domain.

イロト 不得 とくほ とくほ とうほ